No CrossRef data available.
Published online by Cambridge University Press: 21 March 2013
We survey HII free-free emission around ∼60 spectroscopically confirmed young stellar objects (YSOs) in the Large Magellanic Cloud using the Australia Telescope Compact Array (ATCA) at 3.3 and 5.5 cm. From each YSOs' infrared spectrum, we: a) quantify how embedded/evolved the YSO is through principle component analysis (PCA) of the silicate absorption (Seale et al. 2009); and b) estimate the mass from SED models (Robitaille et al. 2007). We have four main results: (1) Based on mass estimates from SED models and ATCA detection limits, we find that most massive YSOs are in HII regions regardless of age; (2) Older massive YSOs (as indicated by silicate PCA index) are much more likely to be resolved than younger YSOs, indicating evolving HII regions; (3) Resolved (typically older) sources usually have lower densities. Thus, in our survey we see a transition from ultra-compact HII to HII regions; and (4) We find that accretion about the massive YSO is likely non-spherical, resulting in HII regions in the shape of prolate spheroids.