Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T21:38:47.720Z Has data issue: false hasContentIssue false

Evolution of Gas Flows over the Starburst to Post-Starburst to Quiescent Galaxy Sequence

Published online by Cambridge University Press:  09 June 2023

Yang Sun
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Gwang-Ho Lee
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA Korea Astronomy and Space Science Institute, 776 Daedeokdae-to, Yuseong-gu, Daejeon, 305-348, Republic of Korea
Ann I. Zabludoff
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
K. Decker French
Affiliation:
Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801, USA
Jakob M. Helton
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Nicole A. Kerrison
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Christy A. Tremonti
Affiliation:
Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53703, USA
Yujin Yang
Affiliation:
Korea Astronomy and Space Science Institute, 776 Daedeokdae-to, Yuseong-gu, Daejeon, 305-348, Republic of Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Even though galactic winds are common in galaxies with starbursts or active galactic nuclei (AGN), the role of such gas flows in galaxy evolution remains uncertain. Here we examine how winds vary along a likely evolutionary sequence connecting starburst to post-starburst to quiescent galaxies. To detect the interstellar medium and measure its bulk flows, we examine the residual Na D absorption line doublet after the stellar contribution has been removed from each galaxy’s spectrum. We discover that outflows diminish along this sequence, i.e., as star formation ends. We then focus on the wind behavior within the post-starburst sample, for which we have measured the time elapsed since the starburst ended (post-burst age) via detailed modeling of their star formation histories (French et al.2018). Even within our post-starburst sample, the fraction of galaxies with significant winds and the average wind velocities decrease with post-burst age after controlling for stellar mass.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29 10.1088/0067-0049/193/2/29CrossRefGoogle Scholar
Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12 10.1088/0067-0049/219/1/12CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 10.1111/j.1365-2966.2004.07881.xCrossRefGoogle Scholar
Cappellari, M. 2017, MNRAS, 466, 798 10.1093/mnras/stw3020CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PSAP, 116, 138 10.1086/381875CrossRefGoogle Scholar
Chen, Y.-M., Tremonti, C. A., Heckman, T. M., et al. 2010, AJ, 140, 445 10.1088/0004-6256/140/2/445CrossRefGoogle Scholar
Couch, W. J. & Sharples, R. M. 1987, MNRAS, 229, 423 10.1093/mnras/229.3.423CrossRefGoogle Scholar
Dressler, A. & Gunn, J. E. 1983, ApJ, 270, 7 10.1086/161093CrossRefGoogle Scholar
French, K. D., Yang, Y., Zabludoff, A. I., et al. 2018, ApJ, 862, 2 10.3847/1538-4357/aacb2dCrossRefGoogle Scholar
Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581 10.1093/mnras/stu1738CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33 10.1046/j.1365-8711.2003.06291.xCrossRefGoogle Scholar
Kereš, D., Katz, N., Davé, R., et al. 2009, MNRAS, 396, 2332 10.1111/j.1365-2966.2009.14924.xCrossRefGoogle Scholar
Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006, MNRAS, 372, 961 10.1111/j.1365-2966.2006.10859.xCrossRefGoogle Scholar
King, A. & Pounds, K. 2015, ARA&A, 53, 115 Google Scholar
Naab, T. & Ostriker, J. P. 2017, ARA&A, 55, 59 Google Scholar
Somerville, R. S. & Davé, R. 2015, ARA&A, 53, 51 Google Scholar
Sun, Y., Lee, G., Zabludoff, A. I., et al. in prepGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898 10.1086/423264CrossRefGoogle Scholar
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639 Google Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769 Google Scholar
Veilleux, S., Maiolino, R., Bolatto, A. D., et al. 2020, A&AR, 28, 2 Google Scholar