Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:16:33.206Z Has data issue: false hasContentIssue false

Evolution and chemical and dynamical effects of high-mass stars

Published online by Cambridge University Press:  01 June 2008

Georges Meynet
Affiliation:
Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland email: [email protected]
Cristina Chiappini
Affiliation:
Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland email: [email protected] Osservatorio Astronomico di TriesteVia G. B. Tiepolo 11, I - 34131 Trieste, Italia email: [email protected]
Cyril Georgy
Affiliation:
Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland email: [email protected]
Marco Pignatari
Affiliation:
Keele University, KeeleStaffordshire ST5 5BG, United Kingdom email: [email protected] Joint Institute for Nuclear AstrophysicsUniversity of Notre Dame, Notre Dame, IN 46556, United States
Raphael Hirschi
Affiliation:
Keele University, KeeleStaffordshire ST5 5BG, United Kingdom email: [email protected]
Sylvia Ekström
Affiliation:
Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland email: [email protected]
André Maeder
Affiliation:
Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review general characteristics of massive stars, present the main observable constraints that stellar models should reproduce. We discuss the impact of massive star nucleosynthesis on the early phases of the chemical evolution of the Milky Way (MW). We show that rotating models can account for the important primary nitrogen production needed at low metallicity. Interestingly such rotating models can also better account for other features as the variation with the metallicity of the C/O ratio. Damped Lyman Alpha (DLA) systems present similar characteristics as the halo of the MW for what concern the N/O and C/O ratios. Although in DLAs, the star formation history might be quite different from that of the halo, in these systems also, rotating stars (both massive and intermediate) probably play an important role for explaining these features. The production of primary nitrogen is accompanied by an overproduction of other elements as 13C, 22Ne and s-process elements. We show also how the observed variation with the metallicity of the number ratio of type Ibc to type II supernovae may be a consequence of the metallicity dependence of the line-driven stellar winds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Akerman, C. J., Carigi, L., Nissen, P. E., Pettini, M., & Asplund, M. 2004, A&A, 414, 931Google Scholar
Aerts, C. 2008, in Massive Stars as Cosmic Engines, Proceedings of the International Astronomical Union, IAU Symposium, Volume 250, p. 237-244CrossRefGoogle Scholar
Barkana, R. 2006, Science, 313, 931CrossRefGoogle Scholar
Brinchmann, J., Kunth, D., & Durret, F. 2008, A&A, 485, 657Google Scholar
Cappellaro, E. & Turatto, M. 2001, The influence of binaries on stellar population studies, Dordrecht: Kluwer Academic Publishers, 2001, xix, 582 p. Astrophysics and space science library (ASSL), Vol. 264. ISBN 0792371046, p.199Google Scholar
Carciofi, A. C., Domiciano de Souza, A., Magalhes, A. M., Bjorkman, J. E. & Vakili, F. 2008, ApJL, 676, 41CrossRefGoogle Scholar
Chiappini, C., Matteucci, F., & Meynet, G. 2003, A&A, 410, 257Google Scholar
Chiappini, C., Matteucci, F., & Ballero, S.K. 2005, A&A, 437, 429Google Scholar
Chiappini, C., Hirschi, R., Meynet, G., Ekström, S., Maeder, A., & Matteucci, F. 2006a, A&A Letters, 449, 27Google Scholar
Chiappini, C., Hirschi, R., Matteucci, F., Meynet, G., Ekström, S., & Maeder, A. 2006b, in “Nuclei in the Cosmos IX”, Proceedings of Science, 9 pages (arXiv:astro-ph/0609410)Google Scholar
Chiappini, C., Ekström, S., Meynet, G., Hirschi, R., Maeder, A., & Charbonnel, C. 2008, A&A, 479, L9Google Scholar
Dessauges-Zavadsky, M., Calura, F., Prochaska, J. X., D'Odorico, S., & Matteucci, F. 2007, A&A, 470, 431Google Scholar
Cusumano, G., Mangano, V., Chincarini, G., et al. 2006, Nature, 440, 164CrossRefGoogle Scholar
Crowther, P. A. 2007, ARAA, 45, 177CrossRefGoogle Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029Google Scholar
Eggenberger, P., Meynet, G., & Maeder, A. 2002, A&A, 386, 756Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008a, A&A, 478, 467Google Scholar
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. 2008b, A&A, in press (arXiv:0807.0573)Google Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 1109CrossRefGoogle Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M.A. 2003a, MNRAS, 338, 360CrossRefGoogle Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M.A. 2003b, MNRAS, 338, 1025CrossRefGoogle Scholar
Freire, P. C. C., Wolszczan, A., van den Berg, M., & Hessels, J. W. T. 2008, ApJ, 679, 1433CrossRefGoogle Scholar
Freyer, T., Hensler, G, & Yorke, H. W. 2003, ApJ, 594, 888CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2006, ApJ, 638, 262CrossRefGoogle Scholar
Heger, A. & Langer, N. 2000, ApJ, 544, 1016CrossRefGoogle Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350CrossRefGoogle Scholar
Hester, J. J. & Desch, S. J. 2005, in Chondrites and the Protoplanetary Disk, ASP Conf. Ser., 341, eds. Krot, A. N., Scott, E. R. D., Reipurth, B., p. 107Google Scholar
Hirschi, R. 2007, A&A, 461, 571Google Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2004, A&A, 425, 649Google Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142CrossRefGoogle Scholar
Hunter, I., Brott, I., Lennon, D. J. et al. 2008b, A&A submitted, astro-ph0711.2267v1Google Scholar
Israelian, G., Ecuvillon, A., Rebolo, R., García-López, R., Bonifacio, P., & Molaro, P. 2004, A&A, 421, 649Google Scholar
Israelian, G. et al. 1999, Nature, 401, 142CrossRefGoogle Scholar
Langer, N. & Maeder, A. 1995, A&A, 295, 685Google Scholar
Langer, N., Cantiello, M., Yoon, S.-C., Hunter, I., Brott, I., Lennon, D., de Mink, S., & Verheijdt, M. 2008, Massive Stars as Cosmic Engines, Proceedings of the International Astronomical Union, IAU Symposium, Volume 250, p. 167-178CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2001, A&A, 373, 555Google Scholar
Maeder, A., Grebel, E. K., & Mermilliod, J.-C. 1999, A&A, 346, 459Google Scholar
Meilland, A., Millour, F., & Stee, P. 2007a, A&A, 464, 73Google Scholar
Meilland, A., Stee, P., & Vannier, M. 2007b, A&A, 464, 59Google Scholar
Meylan, G. & Maeder, A. 1982, A&A, 386, 576Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Meynet, G. & Maeder, A., 2002, A&A, 390, 561Google Scholar
Meynet, G. & Maeder, A. 2003, A&A, 404, 975Google Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Meynet, G., Ekström, S., Maeder, A., Hirschi, R., Georgy, C. & Beffa, C. 2008, Massive Stars as Cosmic Engines, Proceedings of the International Astronomical Union, IAU Symposium, Volume 250, p. 147-160CrossRefGoogle Scholar
Monnier, J. D., Zhao, M., & Pedretti, E., 2007, Science, 317, pp. 342CrossRefGoogle Scholar
Pignatari, M., Gallino, R., Meynet, G., Hirschi, R., Herwig, F., & Wiescher, M. 2008, submitted to ApJ LetterGoogle Scholar
Prantzos, N. & Boissier, S. 2003, A&A, 406, 259Google Scholar
Pérez-Gonzàlez, P. G., Kennicutt, R. C., & Gordon, K. D. 2006, ApJ, 648, 987CrossRefGoogle Scholar
Pettini, M., Zych, B. J., Steidel, C. C., & Chaffee, F. H. 2008, MNRAS, 385, 2011CrossRefGoogle Scholar
Prieto, J. L., Stanek, K. Z., & Beacom, J. F. 2008, ApJ, 673, 999CrossRefGoogle Scholar
Raiteri, C. M., Gallino, R., & Busso, M. 1992, ApJ, 387, 263CrossRefGoogle Scholar
Shapiro, S. L. & Teukolsky, S. A. 1983, in Black holes, white dwarfs, and neutron stars: The physics of compact objects, Wiley-InterscienceCrossRefGoogle Scholar
Spite, M., Cayrel, R., & Plez, B. 2005, A&A, 430, 655Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769CrossRefGoogle Scholar
Weigelt, G., Kraus, S., Driebe, T. 2007, A&A, 464, 87Google Scholar
Wisniewski, J. P. & Bjorkman, K. S. 2006, ApJ, 652, 458CrossRefGoogle Scholar
Woosley, S. E. 1993, ApJ, 405, 273CrossRefGoogle Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507CrossRefGoogle Scholar
Yoon, S.-C. & Langer, N. 2005, A&A, 443, 643Google Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199Google Scholar