Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T11:48:45.291Z Has data issue: false hasContentIssue false

Evolution and appearance of Be stars in SMC clusters

Published online by Cambridge University Press:  18 January 2010

C. Martayan
Affiliation:
European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile email: [email protected] GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon Cedex, France
D. Baade
Affiliation:
European Organisation for Astronomical Research in the Southern Hemisphere, Karl–Schwarzschild–Str. 2, 85748 Garching b. München, Germany
Y. Frémat
Affiliation:
Royal Observatory of Belgium, 3 avenue circulaire, 1180 Brussels, Belgium
J. Zorec
Affiliation:
Institut d'Astrophysique de Paris, UMR7095, CNRS, Université Marie & Pierre Curie, 98bis Boulevard Arago, 75014 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star clusters are privileged laboratories for studying the evolution of massive stars (OB stars). One particularly interesting question concerns the phases during which the classical Be stars occur, which—unlike HAe/Be stars—are not pre-main-sequence objects, nor supergiants. Rather, they are extremely rapidly rotating B-type stars with a circumstellar decretion disk formed by episodic ejections of matter from the central star. To study the impact of mass, metallicity, and age on the Be phase, we observed Small Magellanic Cloud (SMC) open clusters with two different techniques: (i) with the ESO–WFI in slitless mode, which allowed us to find the brighter Be and other emission-line stars in 84 SMC open clusters, and (ii) with the VLT–FLAMES multifiber spectrograph to determine accurately the evolutionary phases of Be stars in the Be-star-rich SMC open cluster NGC 330. Based on a comparison to the Milky Way, a model of Be stellar evolution, appearance as a function of metallicity and mass, and spectral type is developed, involving the fractional critical rotation rate as a key parameter.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baade, D., et al. 1999, ESO Messenger, 95, 15Google Scholar
Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393Google Scholar
Cioni, M.-R. L., Girardi, L., Marigo, P., & Habing, H. J. 2006, A&A, 452, 195Google Scholar
Frémat, Y., Zorec, J., Hubert, A.-M., & Floquet, M. 2005, A&A, 440, 305Google Scholar
Frémat, Y., Neiner, C., Hubert, A.-M., Floquet, M., Zorec, J., Janot–Pacheco, E., & Renan de Medeiros, J. 2006, A&A, 451, 1053Google Scholar
Maeder, A. & Meynet, G. 2001, A&A, 373, 555Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M., Zorec, J., & Neiner, C. 2007, A&A, 462, 683Google Scholar
Martayan, C., Floquet, M., Hubert, A. M., Neiner, C., Frémat, Y., Baade, D., & Fabregat, J. 2008, A&A, 489, 459Google Scholar
Martayan, C., Baade, D., & Fabregat, J. 2009, A&A, in press (arXiv:0909.2303)Google Scholar
Mathew, B., Subramaniam, A., & Bhatt, B. C. 2008, MNRAS, 388, 1879CrossRefGoogle Scholar
McSwain, M. V. & Gies, D. R. 2005 ApJS, 161, 118CrossRefGoogle Scholar
McSwain, M. V., Huang, W., & Gies, D. R. 2009, ApJ, 700, 1216CrossRefGoogle Scholar
Pasquini, L., et al. 2002, ESO Messenger, 110, 1Google Scholar
Udalski, A., Szymański, M., Kubiak, M., Pietrzyński, G., Woźniak, P., & Żebruń, K. 1998, AcA, 48, 147Google Scholar
Zorec, J., Frémat, Y., & Cidale, L. 2005, A&A, 441, 235Google Scholar