Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T08:14:43.679Z Has data issue: false hasContentIssue false

EUV irradiance observations from SDO/EVE as a diagnostic of solar flares

Published online by Cambridge University Press:  09 September 2016

Ryan O. Milligan*
Affiliation:
Astrophysics Research Centre, School of Mathematics & Physics, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN email: [email protected] Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Department of Physics, Catholic University of America, 620 Michigan Avenue, Northeast, Washington, DC 20064, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the past six years, the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has been monitoring changes in the Sun's extreme ultraviolet output over a range of timescales. Its primary function is to provide measurements of the solar spectral irradiance that is responsible for driving fluctuations in Earth's ionosphere and thermosphere. However, despite its modest spectral resolution and lack of spatial information, the EVE spectral range contains many lines and continua that have become invaluable for diagnosing the response of the lower solar atmosphere itself to an injection of energy, particularly during a flare's impulsive phase. In addition, high temperature emission lines can also be used to track changes in temperature and density of flaring plasma in the corona. The high precision of EVE observations are therefore crucial in helping us understand particle acceleration and energy transport mechanisms during solar flares, as well as the origins of the Sun's most geoeffective emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abbett, W. P. & Hawley, S. L. 1999, ApJ, 521, 906 Google Scholar
Allred, J. C., Hawley, S. L., Abbett, W. P., & Carlsson, M. 2005, ApJ, 630, 573 CrossRefGoogle Scholar
Allred, J. C., Kowalski, A. F., & Carlsson, M. 2015, ApJ, 809, 104 CrossRefGoogle Scholar
Brown, J. C. 1971, Sol. Phys., 18, 489 CrossRefGoogle Scholar
Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. 2008, Space Weather, 6, 05001 CrossRefGoogle Scholar
Chamberlin, P. C., Milligan, R. O., & Woods, T. N. 2012, Sol. Phys., 279, 23 CrossRefGoogle Scholar
Ding, M. D. & Schleicher, H. 1997, A&A, 322, 674 Google Scholar
Eparvier, F. G., Thiemann, E. M. B., Chamberlin, P. C., & Woods, T. N. 2015, in Lunar and Planetary Inst. Technical Report, Vol. 46, Lunar and Planetary Science Conference, 3001Google Scholar
Giampapa, M. S., Africano, J. L., Klimke, A., Parks, J., Quigley, R. J., Robinson, R. D., & Worden, S. P. 1982, ApJL, 252, L39 CrossRefGoogle Scholar
Hock, R. A., Chamberlin, P. C., Woods, T. N., Crotser, D., Eparvier, F. G., Woodraska, D. L., & Woods, E. C. 2012, Sol. Phys., 275, 145 CrossRefGoogle Scholar
Hudson, H. S., Woods, T. N., Chamberlin, P. C., et al. 2011, Sol. Phys., 273, 69 CrossRefGoogle Scholar
Kennedy, M. B., Milligan, R. O., Mathioudakis, M., & Keenan, F. P. 2013, ApJ, 779, 84 CrossRefGoogle Scholar
Kretzschmar, M., Dominique, M., & Dammasch, I. E. 2013, Sol. Phys., 286, 221 CrossRefGoogle Scholar
Machado, M. E. & Noyes, R. W. 1978, Sol. Phys., 59, 129 CrossRefGoogle Scholar
Milligan, R. O., Chamberlin, P. C., Hudson, H. S., Woods, T. N., Mathioudakis, M., Fletcher, L., Kowalski, A. F., & Keenan, F. P. 2012a, ApJL, 748, L14 CrossRefGoogle Scholar
Milligan, R. O., Kennedy, M. B., Mathioudakis, M., & Keenan, F. P. 2012b, ApJL, 755, L16 CrossRefGoogle Scholar
Milligan, R. O. & McElroy, S. A. 2013, ApJ, 777, 12 CrossRefGoogle Scholar
Milligan, R. O., et al. 2014, ApJ, 793, 70 CrossRefGoogle Scholar
Milligan, R. O. 2015, Sol. Phys., 290, 3399 CrossRefGoogle Scholar
Milligan, R. O. & Chamberlin, P. C. 2015, ArXiv e-printsGoogle Scholar
Noyes, R. W. & Kalkofen, W. 1970, Sol. Phys., 15, 120 CrossRefGoogle Scholar
Nusinov, A. A. & Kazachevskaya, T. V. 2006, Solar System Research, 40, 111 CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3 Google Scholar
Phillips, K. J. H., Feldman, U., & Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, ed. Phillips, K. J. H., Feldman, U., & Landi, E. (Cambridge University Press)Google Scholar
Qian, L., Solomon, S. C., & Mlynczak, M. G. 2010, Journal of Geophysical Research (Space Physics), 115, 10301 Google Scholar
Rubio da Costa, F., Fletcher, L., Labrosse, N., & Zuccarello, F. 2009, A&A, 507, 1005 Google Scholar
Tobiska, W. K., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D., Rottman, G., & White, O. R. 2000, Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1233 Google Scholar
van Driel-Gesztelyi, L., Hudson, H. S., Anwar, B., & Hiei, E. 1994, Sol. Phys., 152, 145 CrossRefGoogle Scholar
Vernazza, J. E. & Noyes, R. W. 1972, Sol. Phys., 22, 358 CrossRefGoogle Scholar
Viereck, R., et al. 2007, Solar Physics and Space Weather Instrumentation II. Edited by Fineschi, 6689, 66890KGoogle Scholar
Warren, H. P. 2014, ApJL, 786, L2 CrossRefGoogle Scholar
Woods, T. N., Kopp, G., & Chamberlin, P. C. 2006, Journal of Geophysical Research (Space Physics), 111, 10 Google Scholar
Woods, T. N., Eparvier, F. G., Hock, R., et al. 2012, Sol. Phys., 275, 115 CrossRefGoogle Scholar