Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T14:43:14.866Z Has data issue: false hasContentIssue false

Establishing the impact of luminous AGN with multi-wavelength observations and simulations

Published online by Cambridge University Press:  28 October 2024

C. M. Harrison*
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, U.K.
A. Girdhar
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, U.K. European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching bei München, Germany Ludwig Maximilian Universität, Professor-Huber-Platz 2, 80539 Müunchen, Germany
S. R. Ward
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching bei München, Germany Ludwig Maximilian Universität, Professor-Huber-Platz 2, 80539 Müunchen, Germany Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmological simulations fail to reproduce realistic galaxy populations without energy injection from active galactic nuclei (AGN) into the interstellar medium (ISM) and circumgalactic medium (CGM); a process called ‘AGN feedback’. Consequently, observational work searches for evidence that luminous AGN impact their host galaxies. Here, we review some of this work. Multi-phase AGN outflows are common, some with potential for significant impact. Additionally, multiple feedback channels can be observed simultaneously; e.g., radio jets from ‘radio quiet’ quasars can inject turbulence on ISM scales, and displace CGM-scale molecular gas. However, caution must be taken comparing outflows to simulations (e.g., kinetic coupling efficiencies) to infer feedback potential, due to a lack of comparable predictions. Furthermore, some work claims limited evidence for feedback because AGN live in gas-rich, star-forming galaxies. However, simulations do not predict instantaneous, global impact on molecular gas or star formation. The impact is expected to be cumulative, over multiple episodes.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Audibert, A., et al., 2023, A&A, 671, L12 Google Scholar
Bischetti, M., et al., 2021, A&A, 645, A33 Google Scholar
Cicone, C., et al., 2018, NatAs, 2, 176 Google Scholar
Circosta, C., et al., 2021, A&A, 646, A96 Google Scholar
Costa, T., Pakmor, R., Springel, V., 2020, MNRAS, 497, 5229 CrossRefGoogle Scholar
Cresci, G., et al., 2023, A&A, 672, A128 Google Scholar
Davé, R., et al., 2019, MNRAS, 486, 2827 CrossRefGoogle Scholar
Davies, R., et al., 2020, MNRAS, 498, 4150 CrossRefGoogle Scholar
Fiore, F., et al., 2017, A&A, 601, A143 Google Scholar
Fluetsch, A., et al., 2019, MNRAS, 483, 4586 Google Scholar
Girdhar, A., et al., 2022, MNRAS, 512, 1608CrossRefGoogle Scholar
Harrison, C. M., 2017, NatAs, 1, 0165 Google Scholar
Harrison, C. M., et al., 2018, MNRAS, 2, 198 Google Scholar
Jarvis, M. E., et al., 2020, MNRAS, 498, 1560 CrossRefGoogle Scholar
Koss, M. J., et al., 2021, ApJS, 252, 29 CrossRefGoogle Scholar
Mandal, A., et al., 2021, MNRAS, 508, 4738 CrossRefGoogle Scholar
Morganti, R., Murthy, S., Guillard, P., Oosterloo, T., Garcia-Burillo, S., 2023, Galax, 11, 24 CrossRefGoogle Scholar
Pillepich, A., et al., 2018, MNRAS, 473, 4077 CrossRefGoogle Scholar
Piotrowska, J. M., Bluck, A. F. L., Maiolino, R., Peng, Y., 2022, MNRAS, 512, 1052 CrossRefGoogle Scholar
Ramasawmy, J., Stevens, J., Martin, G., Geach, J. E., 2019, MNRAS, 486, 4320 CrossRefGoogle Scholar
Ramos Almeida, C., et al., 2022, A&A, 658, A155 Google Scholar
Rosario, D. J., 2019, ApJL, 875, L8 CrossRefGoogle Scholar
Russell, H. R., et al., 2019, MNRAS, 490, 3025 CrossRefGoogle Scholar
Scholtz, J., et al., 2018, MNRAS, 475, 1288 CrossRefGoogle Scholar
Scholtz, J., et al., 2021, MNRAS, 505, 5469 CrossRefGoogle Scholar
Shangguan, J., Ho, L. C., Bauer, F. E., Wang, R., Treister, E., 2020, ApJ, 899, 112 CrossRefGoogle Scholar
Schaye, J., et al., 2015, MNRAS, 446Google Scholar
Stanley, F., 2015, MNRAS, 453, 591 CrossRefGoogle Scholar
Tacconi, L. J., et al., 2018, ApJ, 853, 179 CrossRefGoogle Scholar
Tamhane, P. D., et al., 2022, MNRAS, 516, 861 CrossRefGoogle Scholar
Valentino, F., et al., 2021, A&A, 654, A165 Google Scholar
Veilleux, S., et al., 2020, A&ARv, 28, 2 Google Scholar
Villar Martn, M., et al., 2023, A&A, 673, A25 Google Scholar
Ward, S.R., et al., 2022, MNRAS, 514, 2936 CrossRefGoogle Scholar