Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:18:45.721Z Has data issue: false hasContentIssue false

Entropy in universes evolving from initial to final de Sitter eras

Published online by Cambridge University Press:  01 July 2015

José P. Mimoso
Affiliation:
Dept. Física, Fac. Ciências, Universidade de Lisboa & CAAUL Campo Grande, Edifcio C8 - P-1749-016 Lisbon, Portugal email: [email protected]
Diego Pavón
Affiliation:
Dept. Física, Universidad Autónoma de Barcelona, 08193 Bellaterra (Barcelona), Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work studies the behavior of entropy in recent cosmological models that start with an initial de Sitter expansion phase, go through the conventional radiation and matter dominated eras to be followed by a final de Sitter epoch. In spite of their seemingly similarities (observationally they are close to the Λ-CDM model), different models deeply differ in their physics. The second law of thermodynamics encapsulates the underlying microscopic, statistical description, and hence we investigate it in the present work. Our study reveals that the entropy of the apparent horizon plus that of matter and radiation inside it, increases and is a concave function of the scale factor. Thus thermodynamic equilibrium is approached in the last de Sitter era, and this class of models is thermodynamically correct. Cosmological models that do not approach equilibrium appear in conflict with the second law of thermodynamics. (Based on Mimoso & Pavon 2013)

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Barrow, J. D. 1986, Phys. Lett. B, 180, 335Google Scholar
Basilakos, S., Polarski, D., & Sola, J. 2012, Phys. Rev. D 86 043010, arXiv:1204.4806CrossRefGoogle Scholar
Callen, H. 1960, Thermodynamics, J. Wiley, N.Y.Google Scholar
Carneiro, S. 2006, Int. J. Mod. Phys. D 15 2241, arXiv:gr-qc/0605133Google Scholar
Carneiro, S. & Tavakol, R. 2009, Gen. Rel. Grav. 41 2287; Int. J. Mod. Phys. D, 18, 2343, arXiv:0905.3131Google Scholar
Carvalho, J. C., Lima, J. A. S., & Waga, I. 1992, Phys. Rev. D, 46, 2404Google Scholar
Lima, J. A. S., Basilakos, S., & Solá, J. 2012, arXiv:1209.2802Google Scholar
Lima, J. A. S., Basilakos, S., & Costa, F. E. M. 2012, Phys. Rev. D, 86, 103534CrossRefGoogle Scholar
Lima, J. A. S. & Germano, A. S. M. 1992, Phys. Lett. A, 170, 373CrossRefGoogle Scholar
Lima, J. A. S. & Maia, J. M. F. 1994, Phys. Rev. D, 49, 5597CrossRefGoogle Scholar
Mimoso, J. P. & Pavón, D. 2013, Phys. Rev. D, 87, 047302Google Scholar
Parker, L. E. & Toms, D. J. 2009, Quantum Field Theory in Curved Spacetime: quantized fields and gravity, Cambridge University Press.Google Scholar
Prigogine, I., Geheniau, J., Gunzig, E., & Nardone, P. 1989, Gen. Rel. Grav., 21, 767CrossRefGoogle Scholar
Prigogine, I. 1989, Int. J. Theor. Phys., 28, 927Google Scholar
Radicella, N. & Pavón, D. 2012, Gen. Relativ. Grav., 44, 685CrossRefGoogle Scholar
Shapiro, I. L. & Sola, J. 2009, Phys. Lett. B, 682, 105CrossRefGoogle Scholar
Solá, J. 2011, J. Phys. Conf. Ser., 283, 012033CrossRefGoogle Scholar