Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:54:10.818Z Has data issue: false hasContentIssue false

The emission of compact jets powered by internal shocks

Published online by Cambridge University Press:  21 February 2013

Julien Malzac*
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The emission of steady compact jets observed in the hard spectral state of X-ray binaries is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. The dynamics of the internal shocks and the resulting spectral energy distribution (SED) of the jet is very sensitive to the shape of the Power Spectral Density (PSD) of the fluctuations of the jet Lorentz factor. I use Monte-Carlo simulations to investigate this dependence. It turns out that Lorentz factor fluctuations injected at the base of the jet with a flicker noise power spectrum (i.e. P(f) ∝ 1/f) naturally produce the canonical flat SED observed from radio to IR band in X-ray binary systems in the hard state. This model also predicts a strong, wavelength dependent, variability that resembles the observed one. In particular, strong sub-second variability is predicted in the infrared and optical bands.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Blandford, R. D. & Königl, A. 1979, ApJ, 232, 34Google Scholar
Casella, P., et al. 2010, MNRAS, 404, L21Google Scholar
Chaty, S., et al. 2003, MNRAS, 346, 689Google Scholar
Chaty, S., Dubus, G., & Raichoor, A. 2011, A&A, 529, A3Google Scholar
Corbel, S. & Fender, R. P. 2002, ApJ, 573, L35Google Scholar
Daigne, F. & Mochkovitch, R. 1998, MNRAS, 296, 275CrossRefGoogle Scholar
Fender, R. P., et al. 2000, MNRAS, 312, 853Google Scholar
Gallo, E., et al. 2005, Nature, 436, 819Google Scholar
Gandhi, P., et al. 2010, MNRAS, 407, 2166Google Scholar
Gandhi, P., et al. 2011, ApJ, 740, L13CrossRefGoogle Scholar
Gilfanov, M. & Arefiev, V. 2005, astro, arXiv:astro-ph/0501215Google Scholar
Jamil, O., Fender, R. P., & Kaiser, C. R. 2010, MNRAS, 401, 394CrossRefGoogle Scholar
Kaiser, C. R., Sunyaev, R., & Spruit, H. C. 2000, A&A, 356, 975Google Scholar
Kaiser, C. R. 2006, MNRAS, 367, 1083CrossRefGoogle Scholar
Kanbach, G., Straubmeier, C., Spruit, H. C., & Belloni, T. 2001, Nature, 414, 180Google Scholar
Lyubarskii, Y. E. 1997, MNRAS, 292, 679Google Scholar
Malzac, 2012, MNRAS, in press.Google Scholar
Migliari, S., Miller-Jones, J. C. A., & Russell, D. M. 2011, MNRAS, 415, 2407Google Scholar
Rahoui, F., et al. 2011, ApJ, 736, 63CrossRefGoogle Scholar
Rees, M. J., 1978, MNRAS, 184, 61PGoogle Scholar
Rees, M. J., Meszaros, P. 1994, ApJ, 430, L93CrossRefGoogle Scholar
Spada, M., Ghisellini, G., Lazzati, D., & Celotti, A. 2001, MNRAS, 325, 1559Google Scholar
Stirling, A. M., et al. 2001, MNRAS, 327, 1273Google Scholar
Zdziarski, A. A. 2012, MNRAS, 422, 1750CrossRefGoogle Scholar
Zdziarski, A. A., Lubiński, P., & Sikora, M. 2012, MNRAS, 2816Google Scholar