Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:10:17.706Z Has data issue: false hasContentIssue false

Electronic spectra of carbon chains and rings: Astrophysical relevance?

Published online by Cambridge University Press:  01 February 2008

Evan B. Jochnowitz
Affiliation:
Department of Chemistry, University of BaselKlingelbergstrasse 80, Basel, Switzerland email: [email protected]
John P. Maier
Affiliation:
Department of Chemistry, University of BaselKlingelbergstrasse 80, Basel, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our research has focused on the measurement of the electronic spectra of unstable molecules which are presumed to be of relevance to astrophysical observations. Among these are the carbon chains and their ions. Thus we have been using and developing a number of spectroscopic methods to determine their spectra in the gas phase, including absorption via cavity ring-down and REMPI methods. The species are produced in supersonic jets coupled with discharge and laser ablation sources. With the successful laboratory detection of the electronic spectra of a number of key species, such as bare carbon chains Cnn=4,5, comparisons with astrophysical data could be made which lead to interesting implications for the future search for the species which could be responsible for the diffuse interstellar bands. Among the recent relevant observations in the laboratory have been the electronic spectra of carbon rings, Cnn=14,18,22, the development of a method to study transitions in mass-selected ions collisionally relaxed to 20 K and held in a 22-pole radiofrequency trap, and the study of metal containing carbon chains.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Apetrei, C., Ding, H., & Maier, J. P. 2007, Phys. Chem. Chem. Phys., 9, 3897CrossRefGoogle Scholar
Boguslavskiy, A. E., Ding, H., & Maier, J. P. 2005, J. Chem. Phys., 123, 034305CrossRefGoogle Scholar
Boguslavskiy, A. E. & Maier, J. P. 2007, Phys. Chem. Chem. Phys., 9, 127CrossRefGoogle Scholar
Chasovskikh, E., Jochnowitz, E. B., Kim, E., Maier, J. P., & Navizet, I. 2007, J. Phys. Chem. A, 111, 11986CrossRefGoogle Scholar
Corlett, G. K., Little, A. M., & Ellis, A. M. 1996, Chem. Phys. Lett, 249, 53CrossRefGoogle Scholar
Ding, H., Apetrei, C., Chacaga, L., & Maier, J. P. 2008, ApJ, 677, 348CrossRefGoogle Scholar
Ding, H., Pino, T., Guethe, F., & Maier, J. P. 2001, J. Chem. Phys., 115, 6913CrossRefGoogle Scholar
Douglas, A. E. 1977, Nature, 269, 130CrossRefGoogle Scholar
Dzhonson, A., Jochnowitz, E. B., & Maier, J. P. 2007, J. Phys. Chem. A, 111, 1887CrossRefGoogle Scholar
Dzhonson, A. & Maier, J. P. 2005, Int. J. Mass. Spectrom., 255, 139Google Scholar
Ekern, S. P., Marshall, A. G., Szczepanski, J., & Vala, M. 1998, J. Phys. Chem. A, 102, 3498CrossRefGoogle Scholar
Foing, B. & Ehrenfreud, P. 1994, Nature, 369, 296CrossRefGoogle Scholar
Fulara, J., Grutter, M., & Maier, J. P. 2007, J. Phys. Chem. A, 111, 11831CrossRefGoogle Scholar
Fulara, J., Jakobi, M., & Maier, J. P. 1993, Chem. Phys. Lett., 211, 227CrossRefGoogle Scholar
Jochnowitz, E. B. & Maier, J. P. 2008, Annu. Rev. Phys. Chem., 59, 519CrossRefGoogle Scholar
Le Page, V., Snow, T. P., & Bierbaum, V. M. 2003, ApJ, 584, 316CrossRefGoogle Scholar
Lucas, R. & Liszt, H. 2000, A&A, 358, 1069Google Scholar
Maier, J. P., Boguslavskiy, A. E., Ding, H., Walker, G. A. H., & Bohlender, D. A. 2006, ApJ, 640, 369CrossRefGoogle Scholar
Maier, J. P., Lakin, N. M., Walker, G. A. H., & Bohlender, D. A. 2001, ApJ, 553, 267CrossRefGoogle Scholar
Maier, J. P., Walker, G. A. H., & Bohlender, D. A. 2002, ApJ, 566, 332CrossRefGoogle Scholar
Maier, J. P., Walker, G. A. H., & Bohlender, D. A. 2004, ApJ, 602, 286CrossRefGoogle Scholar
Motylewski, T., Linnartz, H., Vaizert, O., Maier, J. P., Galazutidinov, G. A., Musaev, F. A., Krelowski, J., Walker, G. A. H., & Bohlender, D. A. 2000, ApJ, 531, 312CrossRefGoogle Scholar
Pino, T., Ding, H., Guethe, F., & Maier, J. P. 2001, J. Chem. Phys., 114, 2208CrossRefGoogle Scholar
Sarre, P. J., Miles, J. R., Kerr, T. H., Hibbins, R. E., Fossey, S. J. & Somerville, W. B. 1995, MNRAS (Letters), 277, L41Google Scholar
Snow, T. P. & McCall, B. J. 2006, ARAA, 44, 367CrossRefGoogle Scholar
Wyss, M., Grutter, M. & Maier, J. P. 1999, Chem. Phys. Lett., 304, 35CrossRefGoogle Scholar