Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T10:11:31.575Z Has data issue: false hasContentIssue false

Effects of the Central Density Profile and the Stellar Mass Function of Merging Galaxies on Eccentricities and Coalescence Times of Supermassive Black Hole Binaries

Published online by Cambridge University Press:  27 October 2016

Fazeel Mahmood Khan
Affiliation:
Department of Space Science, Institute of Space Technology, P. O. Box 2750 Islamabad, Pakistan
Peter Berczik
Affiliation:
National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China National Academy of Sciences of Ukraine, Main Astronomical Observatory, Kyiv, Ukraine Astronomisches Rechen-Institut, Zentrum für Astronomie, Univ. of Heidelberg, Mönchhof-Strasse 12-14, 69120 Heidelberg, Germany
Andreas Just
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie, Univ. of Heidelberg, Mönchhof-Strasse 12-14, 69120 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If able to coalesce in a Hubble time, Supermassive Black hole (SMBH) binaries are very promising sources of gravitational waves (GW). Our earlier studies have shown that SMBH binaries coalesce in post-merger galactic nuclei having triaxial or axisymmetric geometry in a few billion years. In this study, we model the complete evolution of SMBH binaries formed as a result of galaxy mergers having central density profiles that vary from shallow to very steep including a stellar mass function. Energy and angular momentum loss due to GW emission is taken into account using the post-Newtonian approximation. We carry out ten such simulations for each central density profile. The eccentricity of the SMBH binaries remain very high in shallow cusps and decrease systematically for steeper cusps. The coalescence times range from 0.6 to 1.5 Gyr with shorter times for steeper profiles. Typical coalescence times less than a Gyr strengthen our expectation that SMBH binaries should be very promising sources of GW radiation over a wide redshift range.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307 CrossRefGoogle Scholar
Harfst, S., Gualandris, A., Merrit, D., et al. 2007, New Astron., 12, 357 CrossRefGoogle Scholar
Holley-Bockelmann, K. & Khan, F. M. 2015, ApJ, 810, 139 CrossRefGoogle Scholar
Just, A., Khan, F. M., Berczik, P., Ernst, A., & Spurzem, R. 2011, MNRAS, 411, 653 CrossRefGoogle Scholar
Khan, F. M., Just, A., & Merritt, D. 2011, ApJ, 732, 89 CrossRefGoogle Scholar
Khan, F. M., Preto, M., Berczik, P., et al. 2012, ApJ, 749, 147 CrossRefGoogle Scholar
Khan, F. M., Holley-Bockelmann, K., Berczik, P., & Just, A. 2013, ApJ, 773, 100 CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511 Google Scholar
Li, B., Holley-Bockelmann, K., & Khan, F. M. 2015, ApJ, 811, 25 CrossRefGoogle Scholar
Milosavljević, M. & Merritt, D. 2003, ApJ, 596, 860 CrossRefGoogle Scholar
Preto, M., Berentzen, I., Berczik, P., & Spurzem, R. 2011, ApJ, 732, L26 CrossRefGoogle Scholar
Sesana, A. & Khan, F. M. 2015, MNRAS, 454, L66 CrossRefGoogle Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2014, ApJ, 785, 163 CrossRefGoogle Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2015, ApJ, 810, 49 CrossRefGoogle Scholar