Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:48:57.289Z Has data issue: false hasContentIssue false

Effects of Hardness of Primordial Binaries on Evolution of Star Clusters

Published online by Cambridge University Press:  01 September 2007

A. Tanikawa
Affiliation:
Department of General System Studies, College of Arts and Sciences, University of Tokyo email: [email protected]
T. Fukushige
Affiliation:
K&F Computing Research Co. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We performed N-body simulations of star clusters with primordial binaries using a new code, GORILLA. It is based on Makino and Aarseth (1992)'s integration scheme on GRAPE, and includes a special treatment for relatively isolated binaries. Using the new code, we investigated effects of hardness of primordial binaries on whole evolution of the clusters. We simulated seven N=16384 equal-mass clusters containing 10% (in mass) primordial binaries whose binding energies are 1, 3, 10, 30, 100, 300, and 1000kT, respectively. Additionally, we also simulated a cluster without primordial binaries and that in which all binaries are replaced by stars with double mass, as references of soft and hard limits, respectively. We found that, in both soft (≤ 3kT) and hard (≥ 1000kT) limits, clusters experiences deep core collapse and shows gravothermal oscillations. On the other hands, in the intermediate hardness (10-300kT), the core collapses halt halfway due an energy releases of the primordial binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. 2003, Gravitational N-body Simulations (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Cohn, H., Hut, P., & Wise, M. 1989, ApJ, 342, 814CrossRefGoogle Scholar
Fregeau, J. M., Gurkan, M. A., Joshi, K. J., & Rasio, F. A. 2003, ApJ, 593, 772CrossRefGoogle Scholar
Fukushige, T., Makino, J., & Kawai, A. 2005, PASJ, 57, 1009CrossRefGoogle Scholar
Gao, B., Goodman, J., Cohn, H., & Murphy, B. 1991, ApJ, 370, 567CrossRefGoogle Scholar
Giersz, M. & Spurzem, R. 2003, MNRAS, 343, 781CrossRefGoogle Scholar
Heggie, D. C. 1975, MNRAS, 173, 729CrossRefGoogle Scholar
Heggie, D. C. & Mathieu, R. D. 1986, in Lecture Notes in Physics Vol. 267, ed. Hut, P. & McMillan, S. (Berlin: Springer-Verlag), 233Google Scholar
Heggie, D. C., Trenti, M., & Hut, P. 2006, ApJ, 368, 677Google Scholar
Makino, J. & Aarseth, S. 1992, PASJ, 44, 141Google Scholar
Makino, J., Fukushige, T., Koga, M., & Narumi, K. 2003, PASJ, 55, 1163CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., & Makino, J. 2001 MNRAS, 321, 199CrossRefGoogle Scholar
Vespereini, E. & Chernoff, D. F. 1994, ApJ, 431, 231CrossRefGoogle Scholar