Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T08:59:29.136Z Has data issue: false hasContentIssue false

Effects of fast rotation on the wind of Luminous Blue Variables

Published online by Cambridge University Press:  12 July 2011

Jose H. Groh*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While theoretical studies have long suggested a fast-rotating nature of Luminous Blue Variables (LBVs), observational confirmation of fast rotation was not detected until recently. Here I discuss the diagnostics that have allowed us to constrain the rotational velocity of LBVs: broadening of spectral lines and latitude-dependent variations of the wind density structure. While rotational broadening can be directly detected using high-resolution spectroscopy, long-baseline near-infrared interferometry is needed to directly measure the shape of the latitude-dependent photosphere that forms in a fast-rotating star. In addition, complex 2-D radiative transfer models need to be employed if one's goal is to constrain rotational velocities of LBVs. Here I illustrate how the above methods were able to constrain the rotational velocities of the LBVs AG Carinae, HR Carinae, and Eta Carinae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Busche, J. R. & Hillier, D. J. 2005, AJ, 129, 454CrossRefGoogle Scholar
Clark, J. S., Larionov, V. M., & Arkharov, A. 2005, A&A, 435, 239Google Scholar
Conti, P. S. 1984, in: Maeder, A. & Renzini, A. (eds.), Observational Tests of the Stellar Evolution Theory, IAU Symposium 105, p. 233CrossRefGoogle Scholar
Driebe, T., Groh, J. H., Hofmann, K.-H., Ohnaka, K. et al. 2009, A&A, 507, 301Google Scholar
Groh, J. H., Damineli, A., Hillier, D. J., Barbá, R. et al. 2009a, ApJ (Letters), 705, L25CrossRefGoogle Scholar
Groh, J. H., Hillier, D. J., & Damineli, A. 2006, ApJ (Letters), 638, L33CrossRefGoogle Scholar
Groh, J. H., Hillier, D. J., Damineli, A., Whitelock, P. A. et al. 2009b, ApJ, 698, 1698CrossRefGoogle Scholar
Groh, J. H., Madura, T. I., Owocki, S. P., Hillier, D. J. et al. 2010, ApJ (Letters), 716, L223CrossRefGoogle Scholar
Groh, J. H., Oliveira, A. S., & Steiner, J. E. 2008, A&A, 485, 245Google Scholar
Hillier, D. J., Davidson, K., Ishibashi, K., & Gull, T. 2001, ApJ, 553, 837CrossRefGoogle Scholar
Humphreys, R. M. & Davidson, K. 1994, PASP, 106, 1025CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 1994, A&A, 287, 803Google Scholar
Maeder, A. & Meynet, G. 2000a, A&A, 361, 159Google Scholar
Maeder, A. & Meynet, G. 2000b, ARAA, 38, 143CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2003, A&A, 404, 975Google Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJ (Letters), 472, L115CrossRefGoogle Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1998, Ap&SS, 260, 149Google Scholar
Smith, N. 2006, ApJ, 644, 1151CrossRefGoogle Scholar
Smith, N., Davidson, K., Gull, T. R., Ishibashi, K. et al. 2003, ApJ, 586, 432CrossRefGoogle Scholar
van Boekel, R., Kervella, P., Schöller, M., Herbst, T. et al. 2003, A&A, 410, L37Google Scholar
van Genderen, A. M. 2001, A&A, 366, 508Google Scholar
Weigelt, G., Kraus, S., Driebe, T., Petrov, R. G. et al. 2007, A&A, 464, 87Google Scholar
Wolf, B. 1989, A&A, 217, 87Google Scholar