Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:02:32.024Z Has data issue: false hasContentIssue false

The Effect of Massive Binaries on Stellar Populations and Supernova Progenitors

Published online by Cambridge University Press:  01 December 2007

John J. Eldridge
Affiliation:
University of Cambridge, Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, UK e-mail (J.J. Eldridge): [email protected]
Robert G. Izzard
Affiliation:
Sterrekundig Instituut Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands
Christopher A. Tout
Affiliation:
University of Cambridge, Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, UK e-mail (J.J. Eldridge): [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have calculated a large set of detailed binary models and used them to test the observed stellar population ratios that compare the relative populations of blue supergiants, red supergiants and Wolf-Rayet stars at different metallicities. We have also used our models to estimate the relative rate of type Ib/c to type II supernovae. We find, with an interacting binary fraction of about two thirds, that we obtain better agreement between our models and observations than with single stars. We discuss the use of models in determining the nature of supernova progenitors and show the surprising result that many type Ib/c supernova progenitors are less luminous and less massive in our models than the observed population of Wolf-Rayet stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Crockett, R. M., Smartt, S. J., Eldridge, J. J., et al. 2007, MNRAS, 381, 835CrossRefGoogle Scholar
Eldridge, J. J. & Tout, C. A. 2004, MNRAS, 353, 87CrossRefGoogle Scholar
Eldridge, J. J, Izzard, R. G., & Tout C. A. 2008, MNRAS, 384, 1109CrossRefGoogle Scholar
Hamann, W.-R., Gräfener, G., & Liermann A. 2006, A&A, 457, 1015Google Scholar
Heger, A., Fryer, C. L., Woosley, S. E., et al. , 2003 ApJ, 591, 288CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Langer, N. & Maeder, A. 1995, A&A, 295, 685Google Scholar
Maeder, A. & Meynet, G. 1994, A&A, 287, 803Google Scholar
Maeder, A. & Meynet, G. 2001, A&A, 373, 555Google Scholar
Massey, P. 2003, ARA&A, 41, 15Google Scholar
Massey, P. & Olsen, K. A. G. 2003, AJ, 126, 2867CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Oliveira, A. S., Steiner, J. E., & Cieslinski, D. 2003, MNRAS, 346, 963CrossRefGoogle Scholar
Pols, O. R. & Dewi, J. D. M. 2002, PASA, 19, 233PCrossRefGoogle Scholar
Prantzos, N. & Boissier, S. 2003, A&A, 406, 259Google Scholar
Prieto, J. L., Stanek, K. Z., & Beacom, J. F. 2008, ApJ, 673, 999CrossRefGoogle Scholar
Vanbeveren, D., Van Rensbergen, W., & De Loore, C. D. 1998, The Brightest Binaries (Dordrecht: Springer) Astrophys. Space Science Lib., v. 232,CrossRefGoogle Scholar
Wood, J. H. & Lockley, J. J. 2000, MNRAS, 313, 789CrossRefGoogle Scholar