Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T03:48:25.775Z Has data issue: false hasContentIssue false

Eclipsing binary stars as tests of stellar evolutionary models and stellar ages

Published online by Cambridge University Press:  01 October 2008

Keivan G. Stassun
Affiliation:
Physics & Astronomy Dept., Vanderbilt University, VU Station B 1807, Nashville, TN 37235 email: [email protected]
Leslie Hebb
Affiliation:
University of St. Andrews
Mercedes López-Morales
Affiliation:
Carnegie Institution of Washington
Andrej Prša
Affiliation:
Villanova University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ≈1.2 M; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 M) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10–20% larger than predicted. In mass-radius diagrams these stars thus appear 50–90% older or younger than they really are. Aside from these activity-related effects, low-mass pre–main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Devor, J. 2005, ApJ, 628, 411CrossRefGoogle Scholar
Hebb, L., et al. 2006, AJ, 131, 555CrossRefGoogle Scholar
López-Morales, M. 2007, ApJ, 660, 732LCrossRefGoogle Scholar
Luhman, K. L. 1999, Apj, 525, 466CrossRefGoogle Scholar
Mathieu, R. D., et al. 2007, in Protostars & Planets V, 411Google Scholar
Morales, J. C., et al. 2008, in pressGoogle Scholar
Prša, A. & Zwitter, T. 2005, ApJ, 628, 426CrossRefGoogle Scholar
Prša, A. & Zwitter, T. 2007, in IAU Symp. 240, Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, eds Hartkopf, W. I., Guinan, E. F. & Harmanec, P., p217Google Scholar
Prša, A., et al. 2008, ApJ, 687, 542CrossRefGoogle Scholar
Ribas, I., et al. 2008, MmSAI, 79, 562Google Scholar
Simon, M., et al. 2009, submittedGoogle Scholar
Southworth, J., Bruntt, H. & Buzasi, D. L. 2007, A&A, 467, 1215Google Scholar
Southworth, J., et al. 2004, MNRAS, 355, 986CrossRefGoogle Scholar
Stassun, K. G., et al. 2008, Nature, 453, 1079CrossRefGoogle Scholar
Stassun, K. G., Mathieu, R. D. & Valenti, J. 2006, Nature, 440, 311CrossRefGoogle Scholar
Stassun, K. G., Mathieu, R. D. & Valenti, J. 2007, ApJ, 664, 1154CrossRefGoogle Scholar
Stassun, K. G., et al. 2004, ApJS, 127, 3537Google Scholar
Stempels, H. C., et al. 2007, A&A, 481, 747Google Scholar
Tamuz, O., et al. 2006, MNRAS, 367, 1521CrossRefGoogle Scholar
Torres, G. & Ribas, I. 2002, ApJ, 567, 1140CrossRefGoogle Scholar
Torres, G., et al. 2006, ApJ, 640, 1018CrossRefGoogle Scholar
Torres, G., et al. 2008, AJ, 136, 2158CrossRefGoogle Scholar
Wilson, R. E. & Devinney, E. J. 1971, ApJ, 166, 605CrossRefGoogle Scholar
Wyithe, J. S. B. & Wilson, R. E. 2001, ApJ, 559, 260CrossRefGoogle Scholar
Wyithe, J. S. B. & Wilson, R. E. 2002, ApJ, 571, 293CrossRefGoogle Scholar
Wyrzykowski, L., et al. 2003, Acta Astronomica, 53, 1Google Scholar
Young, P. A. & Arnett, D. 2005, ApJ, 618, 908CrossRefGoogle Scholar