Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T17:33:42.408Z Has data issue: false hasContentIssue false

Dynamo models of grand minima

Published online by Cambridge University Press:  05 July 2012

Arnab Rai Choudhuri*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore-560012 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since a universally accepted dynamo model of grand minima does not exist at the present time, we concentrate on the physical processes which may be behind the grand minima. After summarizing the relevant observational data, we make the point that, while the usual sources of irregularities of solar cycles may be sufficient to cause a grand minimum, the solar dynamo has to operate somewhat differently from the normal to bring the Sun out of the grand minimum. We then consider three possible sources of irregularities in the solar dynamo: (i) nonlinear effects; (ii) fluctuations in the poloidal field generation process; (iii) fluctuations in the meridional circulation. We conclude that (i) is unlikely to be the cause behind grand minima, but a combination of (ii) and (iii) may cause them. If fluctuations make the poloidal field fall much below the average or make the meridional circulation significantly weaker, then the Sun may be pushed into a grand minimum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Babcock, H. W. 1961, ApJ, 133, 572Google Scholar
Basu, S. & Antia, H. M. 2010, ApJ, 717, 488Google Scholar
Beer, J., Tobias, S., & Weiss, N. 1998, Solar Phys., 181, 237CrossRefGoogle Scholar
Brandenburg, A., Krause, F., Meinel, R., & Moss, D., Tuominen, I. 1989, A&A, 213, 411Google Scholar
Brandenburg, A. & Spiegel, E. A. 2008, AN, 329, 351Google Scholar
Charbonneau, P. 2005, Solar Phys., 229, 345Google Scholar
Charbonneau, P., Beaubien, G., & St-Jean, C. 2007, ApJ, 658, 657Google Scholar
Charbonneau, P., Blais-Laurier, G., & St-Jean, C. 2004, ApJ, 616, L183Google Scholar
Charbonneau, P. & Dikpati, M. 2000, ApJ, 543, 1027Google Scholar
Charbonneau, P., St-Jean, C., & Zacharias, P. 2005, ApJ, 619, 613Google Scholar
Chatterjee, P. & Choudhuri, A. R. 2006, Solar Phys., 239, 29Google Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019Google Scholar
Choudhuri, A. R. 1989, Solar Phys., 123, 217Google Scholar
Choudhuri, A. R. 1992, A&A, 253, 277Google Scholar
Choudhuri, A. R. 1998, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge)Google Scholar
Choudhuri, A. R. 2003, Solar Phys., 215, 31Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103Google Scholar
Choudhuri, A. R., Gilman, P. A. 1987, ApJ, 316, 788Google Scholar
Choudhuri, A. R. & Karak, B. B. 2009, RAA, 9, 953Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29Google Scholar
D'Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621Google Scholar
Fan, Y., Fisher, G. H., & DeLuca, E. E. 1993, ApJ, 405, 390Google Scholar
Goel, A. & Choudhuri, A. R. 2009, RAA, 9, 115Google Scholar
Guerrero, G., Dikpati, M., & de Gouveia Dal Pino, E. M. 2009 ApJ, 701, 725Google Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science, 327, 1350Google Scholar
Hotta, H. & Yokoyama, T. 2010, ApJ, 714, L308Google Scholar
Hoyng, P. 1993, A&A, 272, 321Google Scholar
Hoyt, D. V. & Schatten, K. H. 1996, Solar Phys., 165, 181Google Scholar
Ivanova, T. S. & Ruzmaikin, A. A. 1977, SvA, 21, 479Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527Google Scholar
Karak, B. B. 2010, ApJ, 724, 1021Google Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Solar Phys., in pressGoogle Scholar
Krause, F. & Meinel, R. 1988, GAFD, 43, 95Google Scholar
Küker, M., Arlt, R., & Rüdiger, G. 1999, A&A 343, 977Google Scholar
Leighton, R. B. 1969, ApJ, 156, 1Google Scholar
Longcope, D. W. & Choudhuri, A. R. 2002, Solar Phys., 205, 63Google Scholar
Mininni, P. D., Gomez, D. O., & Mindlin, G. B. 2001, Solar Phys., 201, 203Google Scholar
Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., & Nakamura, T. 2004, Solar Phys., 224, 317Google Scholar
Moss, D., Brandenburg, A., Tavakol, R., & Tuominen, I. 1992, A&A, 265, 843Google Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011 Nature 471, 80Google Scholar
Ossendrijver, A. J. H., Hoyng, P., & Schmitt, D. 1996, A&A, 313, 938Google Scholar
Parker, E. N. 1955, ApJ, 122, 293Google Scholar
Schmitt, D. & Schüssler, M. 1989, A&A, 223, 343Google Scholar
Schmitt, D., Schüssler, M., & Ferriz-Mas, A. 1996, A&A, 311, L1Google Scholar
Sokoloff, D. & Nesme-Ribes, E. 1994, A&A, 288, 293Google Scholar
Steenbeck, M., Krause, F., & Rädler, K. H. 1966, Z. Naturforsch., 21, 369Google Scholar
Stix, M. 1972, A&A, 20, 9Google Scholar
Usoskin, I. G., Mursula, K., & Kovaltsov, G. A. 2000, A&A, 354, L33Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471, 301Google Scholar
Vaquero, J. M., Gallego, M. C., Usoskin, I. G., & Kovaltsov, G. A. 2011, ApJ, 731, L24Google Scholar
Weiss, N. O., Cattaaneo, F., & Jones, C. A. 1984, GAFD, 30, 305Google Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544CrossRefGoogle Scholar
Yoshimura, H. 1975, ApJ, 201, 740Google Scholar
Yoshimura, H. 1978, ApJ, 226, 706Google Scholar