No CrossRef data available.
Article contents
Dynamo generated field emergence through recurrent plasmoid ejections
Published online by Cambridge University Press: 26 August 2011
Abstract
Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress–and–relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space–time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 6 , Symposium S273: The Physics of Sun and Star Spots , August 2010 , pp. 256 - 260
- Copyright
- Copyright © International Astronomical Union 2011