Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:12:32.679Z Has data issue: false hasContentIssue false

Dynamo coefficients from the Tayler instability

Published online by Cambridge University Press:  12 August 2011

Rainer Arlt
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected], [email protected]
Günther Rüdiger
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current-driven instabilities in stellar radiation zones, to which we refer as Tayler instabilities, can lead to complex nonlinear evolutions. It is of fundamental interest whether magnetically driven turbulence can lead to dynamo action in these radiative zones. We investigate initial-value simulations in a 3D spherical shell including differential rotation. The Tayler instability is connected with a very weak kinetic helicity, stronger current helicity, and a positive αφφ in the northern hemisphere. The amplitudes are small compared to the effect of the tangential cylinder producing an eddy with negative kinetic helicity and negative αφφ in the northern hemisphere. The αφφ from the Tayler instability reaches about 1% of the rms velocity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Arlt, R., Sule, A., & Rüdiger, G. 2007, A&A, 461, 295Google Scholar
Brandenburg, A. & Subramanian, K. 2005, Physics Reports, 417, 1Google Scholar
Braithwaite, J. 2006a, A&A, 449, 451Google Scholar
Braithwaite, J. 2006b, A&A, 453, 687Google Scholar
Brun, A. S. & Zahn, J.-P. 2006 A&A, 457, 665Google Scholar
Cally, P. S. 2000 Sol. Phys., 194, 189Google Scholar
Dikpati, M., Cally, P. S., & Gilman, P. A. 2004, ApJ, 610, 597CrossRefGoogle Scholar
Gellert, M., Rüdiger, G., & Elstner, D. 2008, A&A, 479, L33Google Scholar
Gilman, P. A. & Fox, P. A. 1997, ApJ, 484, 439CrossRefGoogle Scholar
Hollerbach, R. 2000, Int. J. Num. Meth. Fluids, 32, 773Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2010, A&A, 518, A22Google Scholar
Pitts, E. & Tayler, R. J. 1985, MNRAS, 216, 139CrossRefGoogle Scholar
Rüdiger, G. & Kitchatinov, L. L. 2010, Geophys. Astrophys. Fluid Dyn., in pressGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R. 2007, Geophys. Astrophys. Fluid Dyn., 101, 81CrossRefGoogle Scholar
Spruit, H. 2002, A&A, 381, 923Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365Google Scholar
Vandakurov, Yu. V. 1972, SvA, 16, 265Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar