Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T13:57:02.908Z Has data issue: false hasContentIssue false

Dynamics of galaxy structures in the Local Volume

Published online by Cambridge University Press:  12 October 2016

I. D. Karachentsev*
Affiliation:
Special Astrophysical Observatory, Russian Academy of Sciences, N.Arkhyz, KChR, 369167, Russia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I consider a sample of ‘Updated Nearby Galaxy Catalog’ that contains eight hundred objects within 11 Mpc. Environment of each galaxy is characterized by a tidal index Θ1 depending on separation and mass of the galaxy Main Disturber (=MD). The UNGC galaxies with a common MD are ascribed to its ‘suite’ and ranked according to their Θ1. Fifteen the most populated suites contain more than half of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M_B = -18 mag. The observational properties of galaxies accumulated in UNGC are used to derive orbital masses of giant galaxies via motions of their satellites. The average orbital-to-stellar mass ratio for them is MorbM* ≃ 30, corresponding to the mean local density of matter Ωm ≃ 0.09, i.e 1/3 of the global cosmic one. The dark-to-stellar mass ratio for the Milky Way and M31 is typical for other neighboring giant galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abazajian, K. N., Adelman-McCarthy, J. K. & Agüeros, M. A. et al. 2009, ApJS 182, 543 CrossRefGoogle Scholar
Chernin, A. D., Bisnovatyi-Kogan, G. S., Teerikorpi, P., Valtonen, M. J., Byrd, G. G. & Merafina, M. 2013, A&A 553, 101 Google Scholar
Einasto, J., Hütsi, G., Saar, E., Suhhonenko, I., Liivamgi, L. J, Einasto, M., Müller, V.,Google Scholar
Starobinsky, A. A., Tago, E. & Tempel, E. 2011, A&A 531A, 75 Google Scholar
Karachentsev, I. D. & Kudrya, Y. N. 2014, AJ 148, 50 CrossRefGoogle Scholar
Karachentsev, I. D., Kaisina, E. I. & Makarov, D. I. 2014, AJ 147, 13 Google Scholar
Karachentsev, I. D., Makarov, D. & Kaisina, E. 2013, AJ 145, 101 (=UNGC)CrossRefGoogle Scholar
Karachentsev, I. D. 2005, AJ 129, 178 Google Scholar
Knebe, A., Libeskind, N. I., Doumler, T., Yepes, G., Gottlöber, S. & Hoffman, Y. 2011, MNRAS 417L, 56 Google Scholar
Libeskind, N. I., Yepes, G., Knebe, A., Gottlöber, S., Hoffman, Y. & Knollmann, S. R. 2010, MNRAS 401, 1889 CrossRefGoogle Scholar
Lynden-Bell, D. 1981, Observatory 101, 111 Google Scholar
Shandarin, S. F., Sheth, J. V. & Sahni, V. 2004, MNRAS 353, 162 Google Scholar
Zeldovich, Ya. B., 1970, A&A 5, 84 Google Scholar