Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:33:13.915Z Has data issue: false hasContentIssue false

Dynamical models and Galaxy surveys

Published online by Cambridge University Press:  06 January 2014

James Binney
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford, OX1 3NP, UK email: [email protected], [email protected]
Jason L. Sanders
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford, OX1 3NP, UK email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Equilibrium dynamical models are essential tools for extracting science from surveys of our Galaxy. We show how models can be tested with data from a survey before the survey's selection function has been determined. We illustrate the application of this method by presenting some results for the RAVE survey. We extend our published analytic distribution functions to include chemistry and fit the chosen functional form to a combination of the Geneva–Copenhagen survey (GCS) and a sample of G-dwarfs observed at z ~ 1.75 kpc by the SEGUE survey. By including solid dynamics we are able to predict the contribution that the thick disc/halo stars surveyed by SEGUE should make to the GCS survey. We show that the measured [Fe/H] distribution from the GCS includes many fewer stars at [Fe/H] < −0.6 than are predicted. The problem is more likely to lie in discordant abundance scales than with incorrect dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aumer, M. & Binney, J., 2009, MNRAS, 397, 1286Google Scholar
Binney, J., 2010, MNRAS, 401, 2318Google Scholar
Binney, J., 2012a, MNRAS, 426, 1328CrossRefGoogle Scholar
Binney, J., 2012b, MNRAS, 426, 1342 (B12)Google Scholar
Binneyet al., 2013, MNRAS, to be submittedGoogle Scholar
Binney, J. & Tremaine, S., 2008, Galactic Dynamics, Princeton University Press, PrincetonGoogle Scholar
Bovy, J., Rix, H.-W., Liu, C., Hogg, D. W., Beers, T. C., & Lee, Y. S., 2012, ApJ, 753, 148Google Scholar
Burnett, B. & Binney, J., 2010, MNRAS, 407, 339Google Scholar
Casagrande, L., Sch'önrich, R., Asplund, M., Cassisi, S., Ramirez, I., Meléndez, J., Bensby, T., & Feltzing, S., 2011, A&A, 530, 138Google Scholar
Dehnen, W., 1998, AJ, 115, 2384CrossRefGoogle Scholar
Fuhrmann, K., 2011, MNRAS, 414, 2893CrossRefGoogle Scholar
Gilmore, G. & Reid, N., 1983, MNRAS, 202, 1025CrossRefGoogle Scholar
Holmberg, J., Nordström, B., & Andersen, J., 2007, A&A 475, 519Google Scholar
Juricet al., 2008, ApJ, 673, 864Google Scholar
Nordstrom, B., Mayor, M., Andersen, J., Holmberg, J., Pont, F., Jorgensen, B. R., Olsen, E. H., Udry, S., & Mowlavi, N., 2004, A&A, 418, 989Google Scholar
Prendergast, K. H., & Tomer, E., 1970, AJ, 75, 674CrossRefGoogle Scholar
Robin, A., Reylé, C., Derrière, S., & Picaud, S., 2003, A&A, 409, 523Google Scholar
Rowley, G., 1988, ApJ, 331, 124Google Scholar
Sanders, J. L., 2012, MNRAS, 426, 128Google Scholar
Schönrich, R. & Binney, J., 2009, MNRAS, 396, 203 (SB09)CrossRefGoogle Scholar
Selwood, J. A. & Binney, J., 2002, MNRAS, 336, 785Google Scholar