No CrossRef data available.
Published online by Cambridge University Press: 11 March 2020
Several observational and theoretical studies suggest that the initial mass function (IMF) slope for massive stars in globular clusters (GCs) depends on the initial cloud density and metallicity, such that the IMF becomes increasingly top-heavy with decreasing metallicity and increasing the gas density of the forming object. Using N-body simulations of GCs starting with a top-heavy IMF and undergo early gas expulsion within a Milky Way-like potential, we show how such a cluster would evolve. By varying the degree of top-heaviness, we calculate the dissolution time and the minimum cluster mass needed for the cluster to survive after 12 Gyr of evolution.