Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T21:51:16.430Z Has data issue: false hasContentIssue false

Dynamical evolution of anisotropies of the solar wind magnetic turbulent outer scale

Published online by Cambridge University Press:  05 July 2012

M. E. Ruiz
Affiliation:
Instituto de Astronomía y Física del Espacio(CONICET-Universidad de Buenos Aires), C.C. 67, Sucursal 28, 1428, Buenos Aires, Argentina. email: [email protected]
S. Dasso
Affiliation:
Instituto de Astronomía y Física del Espacio(CONICET-Universidad de Buenos Aires), C.C. 67, Sucursal 28, 1428, Buenos Aires, Argentina. email: [email protected] Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1 (1428), Buenos Aires, Argentina. email: [email protected]
W. H. Matthaeus
Affiliation:
Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE, USA. email: [email protected]
E. Marsch
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, Katlenburg-Lindau, Germany. email: [email protected]
J. M. Weygand
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of the turbulent properties in the solar wind, during the travel of the parcels of fluid from the Sun to the outer heliosphere still has several unanswered questions. In this work, we will present results of an study on the dynamical evolution of turbulent magnetic fluctuations in the inner heliosphere. We focused on the anisotropy of the turbulence integral scale, measured parallel and perpendicular to the direction of the local mean magnetic field, and study its evolution according to the aging of the plasma parcels observed at different heliodistances. As diagnostic tool we employed single-spacecraft correlation functions computed with observations collected by Helios 1 & 2 probes over nearly one solar cycle. Our results are consistent with driving modes with wave-vectors parallel to the direction of the local mean magnetic field near the Sun, and a progressive spectral transfer of energy to modes with perpendicular wave-vectors. Advances made in this direction, as those presented here, will contribute to our understanding of the magnetohydrodynamical turbulence and Alfvénic-wave activity for this system, and will provide a quantitative input for models of charged solar and galactic energetic particles propagation and diffusion throughout the inner heliosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Belcher, J. W. & Davis, L. Jr. 1971, J. Geophys. Res., 76, 3534CrossRefGoogle Scholar
Coleman, P. J. Jr. 1968, ApJ, 153, 371CrossRefGoogle Scholar
Dasso, S., Milano, L. J., Matthaeus, W. H., & Smith, C. W. 2005, ApJ 635, L181CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. 1990, J. Geophys. Res., 95, 20673Google Scholar
McComas, D. J., Elliott, H. A., Schwadron, N. A., Gosling, J. T., Skoug, R. M., & Goldstein, B. E. 2003, GRL, 30 (10), 100000–1CrossRefGoogle Scholar
Oughton, S., Priest, E. R., & Matthaeus, W. H. (1994), J. of Fluid Mech., 280, 95CrossRefGoogle Scholar
Roberts, D.AaronGhosh, S. Ghosh, S., Goldstein, M. L., & Mattheaus, W. H. (1991), Phys. Rev. Lett., 67, 3741CrossRefGoogle Scholar
Robinson, D. C. & Rusbridge, M. G. 1971, Phys. of Fluids, 14, 2499CrossRefGoogle Scholar
Ruiz, M. E., Dasso, S., Matthaeus, W. H., Marsch, E., & Weygand, J. M. 2011, J. Geophys. Res. 116 (A15), 10102Google Scholar
Shebalin, J. V., Matthaeus, W. H., & Montgomery, D. 1983, J. of Plasma Phys., 29, 525CrossRefGoogle Scholar
Taylor, G. 1938, The Spectrum of the turbulence, in Proc. R. Soc. London Ser. A, 164, p. 476CrossRefGoogle Scholar
Tu, C. Y. & Marsch, E. 1995, MHD structures, waves and turbulence in the solar wind: observations and theories, Dordrecht: KluwerCrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., Dasso, S., & Kivelson, M. G. 2011, J. Geophys. Res., 116, A08102Google Scholar