Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T01:10:36.274Z Has data issue: false hasContentIssue false

Dynamical evolution of a supernova driven turbulent interstellar medium

Published online by Cambridge University Press:  01 August 2006

Dieter Breitschwerdt
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, A-1180 Vienna, Austria email: [email protected]
Miguel A. de Avillez
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, A-1180 Vienna, Austria email: [email protected] Department of Mathematics, University of Évora, R. Romão Ramalho 59, 7000 Évora, Portugal; email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a number of key observations of the Galactic ISM can be understood, if it is treated as a highly compressible and turbulent medium, energized predominantly by supernova explosions (and stellar winds). We have performed extensive numerical high resolution 3D hydrodynamical and magnetohydrodynamical simulations with adaptive mesh refinement over sufficiently long time scales to erase memory effects of the initial setup. Our results show, in good agreement with observations, that (i) volume filling factors of the hot medium are modest (typically below 20%), (ii) global pressure is far from uniform due to supersonic (and to some extent super-Alfvénic) turbulence, (iii) a significant fraction of the mass (~60%) in the warm neutral medium is in the thermally unstable regime (500 < T < 5000 K), (iv) the average number density of Ovi in absorption is 1.81 × 10−8 cm−3, in excellent agreement with Copernicus and FUSE data, and its distribution is rather clumpy, consistent with its measured dispersion with distance.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta 53, 197CrossRefGoogle Scholar
Avillez, M.A. 2000, MNRAS 315, 479CrossRefGoogle Scholar
Avillez, M.A., & Breitschwerdt, D. 2005, A&A 436, 585 (AB05a)Google Scholar
Avillez, M.A., & Breitschwerdt, D. 2005, ApJ 634, L65 (AB05b)CrossRefGoogle Scholar
Avillez, M.A., & Breitschwerdt, D. 2004, A&A 425, 899 (AB04)Google Scholar
Bowen, D.V., Jenkins, E.B., Tripp, T.M. et al. 2005, in: Sonneborn, G. et al. (eds.), Astrophysics in the Far Ultraviolet – Five years of discovery with FUSE (ASP-CS), 348, 412Google Scholar
Brinks, E., & Bajaja, E. 1986, A&A 169, 14Google Scholar
Burkert, A. 2006, in: Combes, F. & Robert, R. (eds.), Statistical Mechanics of Non-Extensive Systems, Comptes Rendus Physique, vol. 7, p. 433Google Scholar
Cox, D.P., & Smith, B.W. 1974, ApJ 189, L105CrossRefGoogle Scholar
Elmegreen, B.G., & Scalo, J. 2004, ARA&A 42, 211Google Scholar
Field, G.B. 1965, ApJ 142, 531CrossRefGoogle Scholar
Heiles, C., & Troland, T.H. 2003, ApJ 586, 1067CrossRefGoogle Scholar
Jenkins, E.B., & Meloy, D.A. 1974, ApJ 193, L121CrossRefGoogle Scholar
Korpi, M.J., Brandenburg, A., Shukurov, A., et al. , 1999, ApJ 514, L99CrossRefGoogle Scholar
MacLow, M.-M, & Klessen, R.S. 2004, Rev. Mod. Phys. 76 (1), 125CrossRefGoogle Scholar
McKee, C.F. 1990, in: Blitz, L. (ed.), The Evolution of the Interstellar Medium (ASP-CS), 12, p. 3Google Scholar
McKee, C.F., & Ostriker, J.P. 1977, ApJ 218, 148CrossRefGoogle Scholar
Meyer, D.M. 2001, in: Ferlet, R. et al. (eds.), Gaseous Matter in Galaxies and Intergalactic Space (Paris: Editions Frontiéres), p. 135Google Scholar
Norman, C.A., & Ikeuchi, S. 1989, ApJ 345, 372CrossRefGoogle Scholar
Vázquez-Semadeni, E., Gazol, A., & Scalo, J. 2000, ApJ 540, 271CrossRefGoogle Scholar
Wolfire, M.G., McKee, C.F., & Hollenbach, , et al. 1995, ApJ 443, 152CrossRefGoogle Scholar
York, D.G. 1974, ApJ 193, L127CrossRefGoogle Scholar
von Weizsäcker, C.F. 1951, ApJ 114, 165CrossRefGoogle Scholar