Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T20:59:10.492Z Has data issue: false hasContentIssue false

Dynamical evolution modeling of the Collinder 135 & UBC 7 binary star cluster

Published online by Cambridge University Press:  20 January 2023

Marina Ishchenko
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St, 03143 Kyiv, Ukraine
Peter Berczik
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, 1121 Budapest, Hungary
Nina Kharchenko
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St, 03143 Kyiv, Ukraine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present work is a detailed investigation of the dynamical evolution of Collinder 135 and UBC 7 star clusters. We present a set of dynamical numerical simulations using realistic star cluster -body modeling technique with the forward integration of the star-by-star cluster models to the present day, based on best-available 3D coordinates and velocities obtained from the latest Gaia EDR3 data release. We have established that Collinder 135 and UBC 7 are probably a binary star cluster and have common origin. We carried out a full star-by-star N-body simulation of the stellar population of both clusters using the new algorithm of Single Stellar Evolution and performed a comparison of the results obtained in the observational data (like cumulative number counts), which showed a fairly good agreement.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Banerjee, S., Belczynski, K., Fryer, C. L., Berczik, P., Hurley, J. R., Spurzem, R., & Wang, L. 2020, BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences. A&A, 639, A41.Google Scholar
Beccari, G., Boffin, H. M. J., & Jerabkova, T. 2020, Uncovering a 260 pc wide, 35-Myr-old filamentary relic of star formation. MNRAS, 491(2), 22052216.CrossRefGoogle Scholar
Beccari, G., Boffin, H. M. J., Jerabkova, T., Wright, N. J., Kalari, V. M., Carraro, G., De Marchi, G., & de Wit, W.-J. 2018, A sextet of clusters in the Vela OB2 region revealed by Gaia. MNRAS, 481(1), L11L15.CrossRefGoogle Scholar
Berczik, P., Spurzem, R., Wang, L., Zhong, S., & Huang, S. Up to 700k GPU cores, Kepler, and the Exascale future for simulations of star clusters around black holes. In Third International Conference “High Performance Computing”, HPC-UA 2013 , p. 52–59 2013, pp. 52–59.CrossRefGoogle Scholar
Bisht, D., Zhu, Q., Yadav, R. K. S., Ganesh, S., Rangwal, G., Durgapal, A., Sariya, D. P., & Jiang, I.-G. 2021, Multicolour photometry and Gaia EDR3 astrometry of two couples of binary clusters (NGC 5617 and Trumpler 22) and (NGC 3293 and NGC 3324). MNRAS, 503(4), 59295947.Google Scholar
Cantat-Gaudin, T., Jordi, C., Wright, N. J., Armstrong, J. J., Vallenari, A., Balaguer-Núñez, L., Ramos, P., Bossini, D., Padoan, P., Pelkonen, V. M., Mapelli, M., & Jeffries, R. D. 2019,a Expanding associations in the Vela-Puppis region. 3D structure and kinematics of the young population. A&A, 626a, A17.Google Scholar
Cantat-Gaudin, T., Mapelli, M., Balaguer-Núñez, L., Jordi, C., Sacco, G., & Vallenari, A. 2019,b A ring in a shell: the large-scale 6D structure of the Vela OB2 complex. A&A, 621b, A115.Google Scholar
Castro-Ginard, A., Jordi, C., Luri, X., Julbe, F., Morvan, M., Balaguer-Núñez, L., & Cantat-Gaudin, T. 2018, A new method for unveiling open clusters in Gaia. New nearby open clusters confirmed by DR2. A&A, 618, A59.Google Scholar
Ernst, A., Just, A., Berczik, P., & Olczak, C. 2011, Simulations of the Hyades. A&A, 536, A64.Google Scholar
Collaboration, Gaia, Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., & et al. 2016, The Gaia mission. A&A, 595, A1.Google Scholar
Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Portegies Zwart, S., & Berczik, P. 2007, Performance analysis of direct N-body algorithms on special-purpose supercomputers. NewAstr, 12, 357377.Google Scholar
Khan, F. M., Capelo, P. R., Mayer, L., & Berczik, P. 2018, Dynamical Evolution and Merger Timescales of LISA Massive Black Hole Binaries in Disk Galaxy Mergers. ApJ, 868(2), 97.CrossRefGoogle Scholar
Kharchenko, N. V., Piskunov, A. E., Schilbach, E., Röser, S., & Scholz, R.-D. 2012, Global survey of star clusters in the Milky Way. I. The pipeline and fundamental parameters in the second quadrant. A&A, 543, A156.Google Scholar
King, I. R. 1966, The structure of star clusters. III. Some simple dynamical models. AJ, 71, 64.Google Scholar
Kovaleva, D. A., Ishchenko, M., Postnikova, E., Berczik, P., Piskunov, A. E., Kharchenko, N. V., Polyachenko, E., Reffert, S., Sysoliatina, K., & Just, A. 2020, Collinder 135 and UBC 7: A physical pair of open clusters. A&A, 642, L4.CrossRefGoogle Scholar
Kroupa, P. 2001, On the variation of the initial mass function. MNRAS, 322(2), 231246.CrossRefGoogle Scholar
Nitadori, K. & Makino, J. 2008, Sixth- and eighth-order Hermite integrator for N-body simulations. NewAstr, 13, 498507.Google Scholar
Panamarev, T., Just, A., Spurzem, R., Berczik, P., Wang, L., & Arca Sedda, M. 2019, Direct N-body simulation of the Galactic centre. MNRAS, 484(3), 32793290.CrossRefGoogle Scholar
Pang, X., Li, Y., Tang, S.-Y., Pasquato, M., & Kouwenhoven, M. B. N. 2020, Different Fates of Young Star Clusters after Gas Expulsion. ApJL, 900(1), L4.CrossRefGoogle Scholar
Shukirgaliyev, B., Otebay, A., Sobolenko, M., Ishchenko, M., Borodina, O., Panamarev, T., Myrzakul, S., Kalambay, M., Naurzbayeva, A., Abdikamalov, E., Polyachenko, E., Banerjee, S., Berczik, P., Spurzem, R., & Just, A. 2021, Bound mass of Dehnen models with a centrally peaked star formation efficiency. A&A, 654, A53.Google Scholar
Shukirgaliyev, B., Parmentier, G., Berczik, P., & Just, A. 2017, Impact of a star formation efficiency profile on the evolution of open clusters. A&A, 605, A119.Google Scholar
Spurzem, R., Berczik, P., Berentzen, I., Ge, W., Wang, X., Schive, H.-Y., Nitadori, K., & Hamada, T. Supermassive Black Hole Binaries in High Performance Massively Parallel Direct N-body Simulations on Large GPU Clusters. In Dubitzky, W., Kurowski, K. , & Schott, B., editors, Large Scale Computing Techniques for Complex Systems and Simulations 2011,a, Wiley Publishers, pp. 35–58.Google Scholar
Spurzem, R., Berczik, P., Hamada, T., Nitadori, K., Marcus, G., Kugel, A., Männer, R., Berentzen, I., Fiestas, J., Banerjee, R., & Klessen, R. 2011,b Astrophysical Particle Simulations with Large Custom GPU Clusters on Three Continents. Computer Science - Research and Development (CSRD), 26b, 145151.Google Scholar
Spurzem, R., Berczik, P., Zhong, S., Nitadori, K., Hamada, T., Berentzen, I., & Veles, A. Supermassive Black Hole Binaries in High Performance Massively Parallel Direct N-body Simulations on Large GPU Clusters. In Capuzzo-Dolcetta, R., Limongi, M. , & Tornambè, A., editors, Advances in Computational Astrophysics: Methods, Tools, and Outcome 2012, volume 453 of Astronomical Society of the Pacific Conference Series, 223.Google Scholar
Zhong, J., Chen, L., Kouwenhoven, M. B. N., Li, L., Shao, Z., & Hou, J. 2019, Substructure and halo population of Double Cluster h and χ Persei. A&A, 624, A34.Google Scholar