Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:11:51.374Z Has data issue: false hasContentIssue false

A dying radio AGN in the ELAIS-N1 field

Published online by Cambridge University Press:  29 January 2021

Zara Randriamanakoto*
Affiliation:
South African Astronomical Observatory P.O Box 9, Observatory 7935, South Africa email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use low-frequency GMRT observations and 1.4 GHz VLA archival data to study the radio spectrum of a dying radio galaxy discovered in the field of ELAIS-N1. With a linear size of ˜ 100 kpc at a redshift z ˜ 0.33, the diffuse source J1615+5452 exhibits a steep spectral index and a convex radio spectrum. Its radio morphology also seems to lack compact features such as a nuclear core, relativistic jets and hotspots. We record a spectral curvature Δα ≍ -1 and a synchrotron age estimated between 34 - 70 Myr. These characteristics suggest that J1615+5452 is most likely a remnant radio AGN that has spent more than half of its total lifetime in the quiescence phase. The detection of such an elusive source is important since it represents the final phase in the evolution of a radio galaxy unless the nuclear core gets replenished with fresh particles and undergoes a restarting activity.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abolfathi, B., Aguado, D. S., Aguilar, G., et al., 2018, ApJS, 235, 42 10.3847/1538-4365/aa9e8aCrossRefGoogle Scholar
Brienza, M., Godfrey, L., Morganti, R., et al., 2016, A&A, 585, A29 Google Scholar
Brüggen, M., & Kaiser, C. R., 2002, Nature, 418, 301 10.1038/nature00857CrossRefGoogle Scholar
Cordey, R. A., 1987, MNRAS, 227, 695 10.1093/mnras/227.3.695CrossRefGoogle Scholar
Harwood, J. J., Hardcastle, M. J., Croston, J. H., et al., 2013, MNRAS, 435, 3353 10.1093/mnras/stt1526CrossRefGoogle Scholar
Harwood, J. J., Hardcastle, M. J., & Croston, J. H., 2015, MNRAS, 454, 3403 10.1093/mnras/stv2194CrossRefGoogle Scholar
Jamrozy, M., Klein, U., Mack, K.-H., et al., 2004, A&A, 427, 79 Google Scholar
Komissarov, S. S., & Gubanov, A. G., 1994, A&A, 285, 27 Google Scholar
Kormendy, J., & Ho, L. C., 2013, ARA&A, 51, 511 Google Scholar
McNamara, B. R., & Nulsen, P. E. J., 2012, New Journal of Physics, 14, 055023 10.1088/1367-2630/14/5/055023CrossRefGoogle Scholar
Murgia, M., Parma, P., Mack, K.-H., et al., 2011, A&A, 526, A148 Google Scholar
Morganti, R., 2017, Nature Astronomy, 1, 596 10.1038/s41550-017-0223-0CrossRefGoogle Scholar
Parma, P., Murgia, M., de Ruiter, H. R., et al., 2007, A&A, 470, 875 Google Scholar
Randriamanakoto, Z., Ishwara-Chandra, C. H., Taylor, A. R., 2020, submitted to MNRASGoogle Scholar