Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-03T19:13:09.175Z Has data issue: false hasContentIssue false

Dwarf Galaxies as Cosmological Probes

Published online by Cambridge University Press:  30 October 2019

Julio F. Navarro*
Affiliation:
CIfAR Senior Fellow and Professor. Department of Physics and Astronomy, University of Victoria, Victoria, BC, CanadaV8P 5C2 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Lambda Cold Dark Matter (LCDM) paradigm makes specific predictions for the abundance, structure, substructure and clustering of dark matter halos, the sites of galaxy formation. These predictions can be directly tested, in the low-mass halo regime, by dark matter-dominated dwarf galaxies. A number of potential challenges to LCDM have been identified when confronting the expected properties of dwarfs with observation. I review our understanding of a few of these issues, including the “missing satellites” and the “too-big-to-fail” problems, and argue that neither poses an insurmountable challenge to LCDM. Solving these problems requires that most dwarf galaxies inhabit halos of similar mass, and that there is a relatively sharp minimum halo mass threshold to form luminous galaxies. These predictions are eminently falsifiable. In particular, LCDM predicts a large number of “dark” low-mass halos, some of which should have retained enough primordial gas to be detectable in deep 21 cm or Hα surveys. Detecting this predicted population of “mini-halos” would be a major discovery and a resounding success for LCDM on small scales.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Adams, E. A. K., Giovanelli, R., & Haynes, M. P. 2013, ApJ, 768, 77 10.1088/0004-637X/768/1/77CrossRefGoogle Scholar
Behroozi, P. S., Marchesini, D., Wechsler, R. H., et al . 2013, ApJL, 777, L10 10.1088/2041-8205/777/1/L10CrossRefGoogle Scholar
Bentez-Llambay, A., Navarro, J. F., & Abadi, M. G., et al . 2013, ApJL, 763, L41 10.1088/2041-8205/763/2/L41CrossRefGoogle Scholar
Bentez-Llambay, A., Navarro, J. F., & Frenk, C. S., et al . 2017, MNRAS, 465, 3913 10.1093/mnras/stw2982CrossRefGoogle Scholar
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40 10.1111/j.1745-3933.2011.01074.xCrossRefGoogle Scholar
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2012, MNRAS, 422, 1203 10.1111/j.1365-2966.2012.20695.xCrossRefGoogle Scholar
Brook, C. B., Di Cintio, A., & Knebe, A., et al . 2014, ApJL, 784, L14 10.1088/2041-8205/784/1/L14CrossRefGoogle Scholar
Brooks, A. M., & Zolotov, A. 2014, ApJ, 786, 87 10.1088/0004-637X/786/2/87CrossRefGoogle Scholar
Bullock, J. S., & Boylan-Kolchin, M. 2017, ARAA, 55, 343 10.1146/annurev-astro-091916-055313CrossRefGoogle Scholar
Fattahi, A., Navarro, J. F., & Sawala, T., et al . 2016a, MNRAS, 457, 844 10.1093/mnras/stv2970CrossRefGoogle Scholar
Fattahi, A., Navarro, J. F., & Sawala, T., et al . 2016b, arXiv:1607.06479Google Scholar
Fattahi, A., Navarro, J. F., & Frenk, C. S., et al . 2018, MNRAS, 476, 3816 10.1093/mnras/sty408CrossRefGoogle Scholar
Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V., & Gurovich, S. 2012, MNRAS, 425, 2817 10.1111/j.1365-2966.2012.21623.xCrossRefGoogle Scholar
Fitts, A., Boylan-Kolchin, M., Elbert, O. D., et al . 2017, MNRAS, 471, 3547 10.1093/mnras/stx1757CrossRefGoogle Scholar
Frenk, C. S., & White, S. D. M. 2012, Annalen der Physik, 524, 507 10.1002/andp.201200212CrossRefGoogle Scholar
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., & Lee, K. 2014, MNRAS, 438, 2578 10.1093/mnras/stt2377CrossRefGoogle Scholar
Grand, R. J. J., Gómez, F. A., & Marinacci, F., et al . 2017, MNRAS, 467, 179 Google Scholar
McConnachie, A. W. 2012, AJ, 144, 4 10.1088/0004-6256/144/1/4CrossRefGoogle Scholar
Moore, B., Ghigna, S., & Governato, F., et al . 1999, ApJL, 524, L19 10.1086/312287CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563 10.1086/177173CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 10.1086/304888CrossRefGoogle Scholar
Peñarrubia, J., Navarro, J. F., & McConnachie, A. W. 2008, ApJ, 673, 226 10.1086/523686CrossRefGoogle Scholar
Collaboration, Planck, Ade, P. A. R., & Aghanim, N., et al . 2016, A&A, 594, A13 Google Scholar
Sawala, T., Frenk, C. S., & Fattahi, A., et al . 2016, MNRAS, 457, 1931 10.1093/mnras/stw145CrossRefGoogle Scholar
Schaye, J., Crain, R. A., & Bower, R. G., et al . 2015, MNRAS, 446, 521 10.1093/mnras/stu2058CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., & Springel, V., et al . 2014, Nature, 509, 177 10.1038/nature13316CrossRefGoogle Scholar
Walker, M. G., Mateo, M., & Olszewski, E. W., et al . 2009, ApJ, 704, 1274 10.1088/0004-637X/704/2/1274CrossRefGoogle Scholar
Wang, J., Frenk, C. S., Navarro, J. F., Gao, L., & Sawala, T. 2012, MNRAS, 424, 2715 10.1111/j.1365-2966.2012.21357.xCrossRefGoogle Scholar
Wang, L., Dutton, A. A., & Stinson, G. S., et al . 2015, MNRAS, 454, 83 10.1093/mnras/stv1937CrossRefGoogle Scholar
Wetzel, A. R., Hopkins, P. F, Kim, J., Faucher-Giguere, C. A., Keres, D., Quataert, E., et al . 2016, ApJ, 827, 2310.3847/2041-8205/827/2/L23CrossRefGoogle Scholar
Wolf, J., Martinez, G. D., & Bullock, J. S., et al . 2010, MNRAS, 406, 1220 Google Scholar