Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:37:04.982Z Has data issue: false hasContentIssue false

The dust properties of star-forming galaxies in the first billion years

Published online by Cambridge University Press:  09 June 2023

Elisabete da Cunha*
Affiliation:
International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Atacama Large Millimetre/Sub-millimetre Array (ALMA) is obtaining the deepest observations of early galaxies ever achieved at (sub-)millimetre wavelengths, and detecting the dust emission of young galaxies in the first billion years of cosmic history, well in the epoch of reionization. Here I review some of the latest results from these observations, with special focus on the REBELS large programme, which targets a sample of 40 star-forming galaxies at z ⋍ 7. ALMA detects significant amounts of dust in very young galaxies, and this dust might have different properties to dust in lower-redshift galaxies. I describe the evidence for this, and discuss theoretical/modelling efforts to explain the dust properties of these young galaxies. Finally, I describe two additional surprising results to come out of the REBELS survey: (i) a new population of completely dust-obscured galaxies at z ⋍ 7, and (ii) the prevalence of spatial offsets between the ultraviolet and infrared emission of UV-bright, high-redshift star-forming galaxies.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Algera, H., Inami, H., Oesch, P., et al. 2022, arXiv e-prints, arXiv:2208.08243Google Scholar
Aoyama, S., Hirashita, H., & Nagamine, K. 2020, MNRAS, 491, 3844 Google Scholar
Asano, R. S., Takeuchi, T. T., Hirashita, H., & Inoue, A. K. 2013 a, Earth, Planets, and Space, 65, 213 10.5047/eps.2012.04.014CrossRefGoogle Scholar
Asano, R. S., Takeuchi, T. T., Hirashita, H., & Nozawa, T. 2013 b, MNRAS, 432, 637 10.1093/mnras/stt506CrossRefGoogle Scholar
Bakx, T. J. L. C., Sommovigo, L., Carniani, S., et al. 2021, MNRAS, 508, L58 10.1093/mnrasl/slab104CrossRefGoogle Scholar
Barisic, I., Faisst, A. L., Capak, P. L., et al. 2017, ApJ, 845, 41 10.3847/1538-4357/aa7edaCrossRefGoogle Scholar
Behrens, C., Pallottini, A., Ferrara, A., Gallerani, S., & Vallini, L. 2018, MNRAS, 477, 552 10.1093/mnras/sty552CrossRefGoogle Scholar
Bertoldi, F., Carilli, C. L., Cox, P., et al. 2003, A&A, 406, L55 10.1051/0004-6361:20030710CrossRefGoogle Scholar
Bouwens, R. J., Aravena, M., Decarli, R., et al. 2016, ApJ, 833, 72 10.3847/1538-4357/833/1/72CrossRefGoogle Scholar
Bouwens, R. J., Smit, R., Schouws, S., et al. 2022, ApJ, 931, 160 10.3847/1538-4357/ac5a4aCrossRefGoogle Scholar
Bowler, R. A. A., Bourne, N., Dunlop, J. S., McLure, R. J., & McLeod, D. J. 2018, MNRAS, 481, 1631 10.1093/mnras/sty2368CrossRefGoogle Scholar
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582 10.1086/174346CrossRefGoogle Scholar
Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455 10.1038/nature14500CrossRefGoogle Scholar
Casey, C. M., Narayanan, D., & Cooray, A. 2014, Physics Reports, 541, 45 10.1016/j.physrep.2014.02.009CrossRefGoogle Scholar
Cochrane, R. K., Best, P. N., Smail, I., et al. 2021, MNRAS, 503, 2622 10.1093/mnras/stab467CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595 10.1111/j.1365-2966.2008.13535.xCrossRefGoogle Scholar
da Cunha, E., Hodge, J. A., Casey, C. M., et al. 2021, ApJ, 919, 30 10.3847/1538-4357/ac0ae0CrossRefGoogle Scholar
Dayal, P., Ferrara, A., Sommovigo, L., et al. 2022, MNRAS, 512, 989 10.1093/mnras/stac537CrossRefGoogle Scholar
Dole, H., Lagache, G., Puget, J. L., et al. 2006, A&A, 451, 417 10.1051/0004-6361:20054446CrossRefGoogle Scholar
Dudzevičiūtė, U., Smail, I., Swinbank, A. M., et al. 2020, MNRAS, 494, 3828Google Scholar
Dwek, E. 1998, ApJ, 501, 643 10.1086/305829CrossRefGoogle Scholar
Dwek, E., & Cherchneff, I. 2011, ApJ, 727, 63 10.1088/0004-637X/727/2/63CrossRefGoogle Scholar
Faisst, A. L., Fudamoto, Y., Oesch, P. A., et al. 2020, MNRAS, 498, 4192 10.1093/mnras/staa2545CrossRefGoogle Scholar
Faisst, A. L., Capak, P. L., Yan, L., et al. 2017, ApJ, 847, 21 10.3847/1538-4357/aa886cCrossRefGoogle Scholar
Ferrara, A., Viti, S., & Ceccarelli, C. 2016, MNRAS, 463, L112 10.1093/mnrasl/slw165CrossRefGoogle Scholar
Ferrara, A., Sommovigo, L., Dayal, P., et al. 2022, MNRAS, 512, 58 Google Scholar
Fudamoto, Y., Oesch, P. A., Schinnerer, E., et al. 2017, MNRAS, 472, 483 10.1093/mnras/stx1948CrossRefGoogle Scholar
Fudamoto, Y., Oesch, P. A., Magnelli, B., et al. 2020, MNRAS, 491, 4724 10.1093/mnras/stz3248CrossRefGoogle Scholar
Fudamoto, Y., Oesch, P. A., Schouws, S., et al. 2021, Nature, 597, 489 10.1038/s41586-021-03846-zCrossRefGoogle Scholar
Gall, C., Andersen, A. C., & Hjorth, J. 2011, A&A, 528, A13 10.1051/0004-6361/201015286CrossRefGoogle Scholar
Galliano, F., Galametz, M., & Jones, A. P. 2018, ARA&A, 56, 673 10.1146/annurev-astro-081817-051900CrossRefGoogle Scholar
Graziani, L., Schneider, R., Ginolfi, M., et al. 2020, MNRAS, 494, 1071 10.1093/mnras/staa796CrossRefGoogle Scholar
Hirashita, H., & Ferrara, A. 2002, MNRAS, 337, 921 10.1046/j.1365-8711.2002.05968.xCrossRefGoogle Scholar
Hodge, J. A., & da Cunha, E. 2020, Royal Society Open Science, 7, 200556 10.1098/rsos.200556CrossRefGoogle Scholar
Hodge, J. A., Smail, I., Walter, F., et al. 2019, ApJ, 876, 130 10.3847/1538-4357/ab1846CrossRefGoogle Scholar
Inami, H., Algera, H. S. B., Schouws, S., et al. 2022, MNRAS, 515, 3126 10.1093/mnras/stac1779CrossRefGoogle Scholar
Jin, S., Daddi, E., Liu, D., et al. 2018, ApJ, 864, 56 10.3847/1538-4357/aad4afCrossRefGoogle Scholar
Jin, S., Daddi, E., Magdis, G. E., et al. 2022, A&A, 665, A3 10.1051/0004-6361/202243341CrossRefGoogle Scholar
Katz, H., Saxena, A., Cameron, A. J., et al. 2022, MNRASGoogle Scholar
Kobayashi, C., Karakas, A. I., & Lugaro, M. 2020, ApJ, 900, 179 10.3847/1538-4357/abae65CrossRefGoogle Scholar
Liang, L., Feldmann, R., Kereš, D., et al. 2019, MNRAS, 489, 1397 10.1093/mnras/stz2134CrossRefGoogle Scholar
Liu, D., Daddi, E., Dickinson, M., et al. 2018, ApJ, 853, 172 10.3847/1538-4357/aaa600CrossRefGoogle Scholar
Ma, X., Hayward, C. C., Casey, C. M., et al. 2019, MNRAS, 487, 1844 10.1093/mnras/stz1324CrossRefGoogle Scholar
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415 10.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Mancini, M., Schneider, R., Graziani, L., et al. 2016, MNRAS, 462, 3130 10.1093/mnras/stw1783CrossRefGoogle Scholar
Mancini, M., Schneider, R., Graziani, L.. 2015, MNRAS, 451, L70 10.1093/mnrasl/slv070CrossRefGoogle Scholar
McAlpine, S., Smail, I., Bower, R. G., et al. 2019, MNRAS, 488, 2440 10.1093/mnras/stz1692CrossRefGoogle Scholar
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64 10.1086/307523CrossRefGoogle Scholar
Narayanan, D., Davé, R., Johnson, B. D., et al. 2018, MNRAS, 474, 1718 10.1093/mnras/stx2860CrossRefGoogle Scholar
Popping, G., Somerville, R. S., & Galametz, M. 2017, MNRAS, 471, 3152 10.1093/mnras/stx1545CrossRefGoogle Scholar
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Nature, 496, 329 10.1038/nature12050CrossRefGoogle Scholar
Schaerer, D., Marques-Chaves, R., Barrufet, L., et al. 2022, A&A, 665, L4 10.1051/0004-6361/202244556CrossRefGoogle Scholar
Schouws, S., Stefanon, M., Bouwens, R., et al. 2022, ApJ, 928, 31 10.3847/1538-4357/ac4605CrossRefGoogle Scholar
Schreiber, C., Elbaz, D., Pannella, M., et al. 2018, A&A, 609, A30 10.1051/0004-6361/201731506CrossRefGoogle Scholar
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74 10.1051/0004-6361/201425017CrossRefGoogle Scholar
Smail, I., Dudzevičiūtė, U., Stach, S. M., et al. 2021, MNRAS, 502, 342610.1093/mnras/stab283CrossRefGoogle Scholar
Sommovigo, L., Ferrara, A., Carniani, S., et al. 2021, MNRAS, 503, 4878 10.1093/mnras/stab720CrossRefGoogle Scholar
Sommovigo, L., Ferrara, A., Pallottini, A., et al. 2020, arXiv e-prints, arXiv:2004.09528Google Scholar
Mancini, M., Schneider, R., Graziani, L.. 2022, MNRAS, 513, 3122 Google Scholar
Topping, M. W., Stark, D. P., Endsley, R., et al. 2022, MNRAS, 516, 975 10.1093/mnras/stac2291CrossRefGoogle Scholar
Walter, F., Decarli, R., Carilli, C., et al. 2012, Nature, 486, 233 10.1038/nature11073CrossRefGoogle Scholar
Wang, T., Schreiber, C., Elbaz, D., et al. 2019, Nature, 572, 211 10.1038/s41586-019-1452-4CrossRefGoogle Scholar
Whitaker, K. E., Pope, A., Cybulski, R., et al. 2017, ApJ, 850, 208 10.3847/1538-4357/aa94ceCrossRefGoogle Scholar
Witstok, J., Smit, R., Maiolino, R., et al. 2022, MNRAS, 515, 1751 10.1093/mnras/stac1905CrossRefGoogle Scholar
Zavala, J. A., Casey, C. M., Manning, S. M., et al. 2021, ApJ, 909, 165 Google Scholar
Zhukovska, S. 2014, A&A, 562, A76 10.1051/0004-6361/201322989CrossRefGoogle Scholar
Zhukovska, S., Gail, H. P., & Trieloff, M. 2008, A&A, 479, 453 10.1051/0004-6361:20077789CrossRefGoogle Scholar