Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T06:17:40.879Z Has data issue: false hasContentIssue false

Dust in debris disk: Observations and laboratory experiments

Published online by Cambridge University Press:  12 October 2020

Johan Olofsson*
Affiliation:
Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile email: [email protected] Núcleo Milenio Formación Planetaria - NPF, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Debris disks are the natural by-products of the star and planet formation processes. Since the 1980’s several thousands of debris disks have been detected, and the presence of a disk is inferred by the detection of excess emission over the photospheric emission. This thermal emission arises from (micron-sized or slightly bigger) dust grains heated by the central star. However, in the vast majority of cases, these observations are not spatially resolving the radial distribution of the dust, resulting in strong degeneracies in the modeling approach (radial distance vs minimum grain size mostly). Therefore the properties of the small dust grains remained largely unconstrained until the arrival of high angular resolution instruments, especially at optical and near-infrared wavelengths. In these proceeding some of the main results are presented that have been obtained over the past few years on the properties of small dust grains in debris disks, and it is discussed how laboratory experiments contributed to put those results in context.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Augereau, J.-C. & Beust, H. 2006, A&A, 455, 987 Google Scholar
Benisty, M., Juhasz, A., Boccaletti, A., et al. 2015, A&A, 578, L6 Google Scholar
Bertini, I., La Forgia, F., Fulle, M., et al. 2019, MNRAS, 482, 2924 Google Scholar
Beuzit, J., Vigan, A., Mouillet, D., et al. 2019, A&A, 631, A155 Google Scholar
Boccaletti, A., Augereau, J.-C., Lagrange, A.-M., et al. 2012, A&A, 544, A85 Google Scholar
Buenzli, E., Thalmann, C., Vigan, A., et al. 2010, A&A, 524, L1 Google Scholar
Choquet, É., Perrin, M. D., Chen, C. H., et al. 2016, ApJ, 817, L2 CrossRefGoogle Scholar
Currie, T., Guyon, O., Tamura, M., et al. 2017, ApJ, 836, L15 CrossRefGoogle Scholar
Currie, T., Lisse, C. M., Kuchner, M., et al. 2015, ApJ, 807, L7 CrossRefGoogle Scholar
Draine, B. T. & Flatau, P. J. 1994, J. Opt. Soc. Am. A., 11, 1491 CrossRefGoogle Scholar
Dressing, C. D. & Charbonneau, D. 2015, ApJ, 807, 45 CrossRefGoogle Scholar
Eiroa, C., Marshall, J. P., Mora, A., et al. 2013, A&A, 555, A11 Google Scholar
Engler, N., Boccaletti, A., Schmid, H. M., et al. 2019, A&A, 622, A192 Google Scholar
Engler, N., Schmid, H. M., Thalmann, C., et al. 2017, A&A, 607, A90 Google Scholar
Esposito, T. M., Duchêne, G., Kalas, P., et al. 2018, AJ, 156, 47 Google Scholar
Esposito, T. M., Fitzgerald, M. P., Graham, J. R., et al. 2016, AJ, 152, 85 CrossRefGoogle Scholar
Feldt, M., Olofsson, J., Boccaletti, A., et al. 2017, A&A, 601, A7 Google Scholar
Frattin, E., Muñoz, O., Moreno, F., et al. 2019, MNRAS, 484, 2198 CrossRefGoogle Scholar
Gibbs, A., Wagner, K., Apai, D., et al. 2019, AJ, 157, 39 CrossRefGoogle Scholar
Halder, P., Deb Roy, P., & Das, H. S. 2018, Icarus, 312, 45 CrossRefGoogle Scholar
Hughes, A. M., Duchêne, G., & Matthews, B. C. 2018, ARA&A, 56, 541 CrossRefGoogle Scholar
Kalas, P. G., Rajan, A., Wang, J. J., et al. 2015, ApJ, 814, 32 Google Scholar
Kasper, M., Apai, D., Wagner, K., & Robberto, M. 2015, ApJ, 812, L33 CrossRefGoogle Scholar
Lagrange, A.-M., Langlois, M., Gratton, R., et al. 2016, A&A, 586, L8 Google Scholar
Lagrange, A.-M., Milli, J., Boccaletti, A., et al. 2012, A&A, 546, A38 Google Scholar
Lebreton, J., Augereau, J.-C., Thi, W.-F., et al. 2012, A&A, 539, A17 Google Scholar
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556 CrossRefGoogle Scholar
Matthews, B., Krivov, A., Wyatt, M., Bryden, G., & Eiroa, C. 2014, ArXiv e-printsGoogle Scholar
Matthews, E., Hinkley, S., Vigan, A., et al. 2017, ApJ, 843, L12 CrossRefGoogle Scholar
Millar-Blanchaer, M. A., Wang, J. J., Kalas, P., et al. 2016, ApJ, 152, 128 CrossRefGoogle Scholar
Milli, J., Engler, N., Schmid, H., et al. 2019, ArXiv e-printsGoogle Scholar
Milli, J., Mouillet, D., Lagrange, A.-M., et al. 2012, A&A, 545, A111 Google Scholar
Milli, J., Vigan, A., Mouillet, D., et al. 2017, A&A, 599, A108 Google Scholar
Min, M., Hovenier, J. W., & de Koter, A. 2005, A&A, 432, 909 Google Scholar
Min, M., Rab, C., Woitke, P., Dominik, C., & Ménard, F. 2016, A&A, 585, A13 Google Scholar
Olofsson, J., Samland, M., Avenhaus, H., et al. 2016, A&A, 591, A108 Google Scholar
Olofsson, J., van Holstein, R. G., Boccaletti, A., et al. 2018, A&A, 617, A109 Google Scholar
Perrin, M. D., Duchene, G., Millar-Blanchaer, M., et al. 2015, ApJ, 799, 182 CrossRefGoogle Scholar
Purcell, E. M. & Pennypacker, C. R. 1973, ApJ, 186, 705 CrossRefGoogle Scholar
Roy, P. D., Halder, P., & Das, H. S. 2017, arXiv e-prints, arXiv:1709.09319Google Scholar
Sissa, E., Olofsson, J., Vigan, A., et al. 2018, A&A, 613, L6 Google Scholar
Soummer, R., Perrin, M. D., Pueyo, L., et al. 2014, ApJ, 786, L23 CrossRefGoogle Scholar
Stark, C. C., Schneider, G., Weinberger, A. J., et al. 2014, ApJ, 789, 58 CrossRefGoogle Scholar
Tazaki, R., Tanaka, H., Muto, T., Kataoka, A., & Okuzumi, S. 2019, MNRAS, 485, 4951 CrossRefGoogle Scholar
Thalmann, C., Janson, M., Buenzli, E., et al. 2013, ApJ, 763, L29 CrossRefGoogle Scholar
Thalmann, C., Janson, M., Buenzli, E., et al. 2011, ApJ, 743, L6 CrossRefGoogle Scholar
Wahhaj, Z., Milli, J., Kennedy, G., et al. 2016, A&A, 596, L4 Google Scholar
Wyatt, M. C. 2008, ARA&A, 46, 339 CrossRefGoogle Scholar