Published online by Cambridge University Press: 12 October 2020
A key element when modeling dust in any astrophysical environment is a self-consistent treatment of the evolution of the dust material properties (size distribution, chemical composition and structure) as they react to and adjust to the local radiation field intensity and hardness and to the gas density and dynamics. The best way to achieve this goal is to anchore as many model parameters as possible to laboratory data. In this paper, I present two examples to illustrate how outstanding questions in dust modeling have been/are being moved forward by recent advances in laboratory astrophysics and what laboratory data are still needed to further advance dust evolution models.