Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T08:13:43.407Z Has data issue: false hasContentIssue false

Dust evolution: Going beyond the empirical

Published online by Cambridge University Press:  12 October 2020

Nathalie Ysard*
Affiliation:
Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris Saclay, Bâtiment 121, 91405 Orsay Cedex, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A key element when modeling dust in any astrophysical environment is a self-consistent treatment of the evolution of the dust material properties (size distribution, chemical composition and structure) as they react to and adjust to the local radiation field intensity and hardness and to the gas density and dynamics. The best way to achieve this goal is to anchore as many model parameters as possible to laboratory data. In this paper, I present two examples to illustrate how outstanding questions in dust modeling have been/are being moved forward by recent advances in laboratory astrophysics and what laboratory data are still needed to further advance dust evolution models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Birnstiel, T., Dullemond, C. P., Zhu, Z., et al. 2018, ApJ, 869, 45 CrossRefGoogle Scholar
Blum, J. & Wurm, G. 2008, ARA&A, 46, 21 CrossRefGoogle Scholar
Bohlin, R. C., Savage, B. D., Drake, J. F., et al. 1978, ApJ, 224, 132 CrossRefGoogle Scholar
Boogert, A. C. A., Gerakines, P. A., Whittet, D. C. B., et al. 2015, ARA&A, 53, 541 CrossRefGoogle Scholar
Busquet, G., Girart, J. M., Estalella, R., et al. 2019, A&A, 623, 8 Google Scholar
Campeggio, L., Strafella, F., Maiolo, B., et al. 2007, ApJ, 668, 316 CrossRefGoogle Scholar
Compiègne, M., Verstraete, L., Jones, C. B., et al. 2011, A&A, 525, 103 Google Scholar
Dartois, E., Cox, P., Roelfsema, P. R., et al. 1998, A&A, 338, 21 Google Scholar
Davis, D. R & Ryan, E. V. 1998, Icarus, 83, 156 CrossRefGoogle Scholar
Demyk, K., Meny, C., Lu, X.-H., et al. 2017, A&A, 606, 50 Google Scholar
Désert, F.-X., Boulanger, F., Puget, J. L. et al. 1990, A&A, 237, 215 Google Scholar
Draine, B. T. 2006, ApJ, 636, 1114 CrossRefGoogle Scholar
Draine, B. T. & Fraisse, A. A. 2009, ApJ, 696, 1 CrossRefGoogle Scholar
Draine, B. T. & Lee, H. M. 1984, ApJ, 285, 89 CrossRefGoogle Scholar
Draine, B. T. & Li, A. 2007 ApJ, 657, 810 CrossRefGoogle Scholar
Fanciullo, L., Guillet, V., Aniano, G., et al. 2015 A&A, 580, 136 Google Scholar
Fanciullo, L., Guillet, V., Boulanger, F., et al. 2017, A&A, 602, 7 Google Scholar
Foster, J. B. & Goodman, A. A. 2006, ApJ, 636, 105 CrossRefGoogle Scholar
Gundlach, B., Kilias, S., Beitz, E., et al. 2011, Icarus, 214, 717 CrossRefGoogle Scholar
Gundlach, B. & Blum, J. S. 2015, ApJ, 798, 34 CrossRefGoogle Scholar
Güttler, C., Krause, M., Geretshauser, R. J., et al. 2009, ApJ, 701, 130 CrossRefGoogle Scholar
Güttler, C., Blum, J., Zsom, A., et al. 2010, A&A, 513, 56 Google Scholar
Galliano, F., Galametz, M., Jones, A. P. et al. 2018, ARA&A, 56, 673 CrossRefGoogle Scholar
Guillet, V., Fanciullo, L., Verstraete, L., et al. 2018, A&A, 610, 16 Google Scholar
Jones, A. P, Fanciullo, L., Koehler, M., et al. 2013, A&A, 558, 62 Google Scholar
Juvela, M., Ristorcelli, I., Pelkonen, V.-M., et al. 2011, A&A, 527, 111 Google Scholar
Juvela, M., Guillet, V., Liu, T., et al. 2018, A&A, 620, 26 Google Scholar
Koehler, M., Jones, A. P., Ysard, N., et al. 2014 A&A, 565, 9 Google Scholar
Lefèvre, C., Pagani, L., Min, M. et al. 2016, A&A, 585, 4 Google Scholar
Lenz, D., Hensley, B. S., Doré, O., et al. 2017, ApJ, 846, 38 CrossRefGoogle Scholar
Liszt, H. S. 2014, ApJ, 780, 10 CrossRefGoogle Scholar
Lorek, S., Lacerda, P., Blum, J. et al. 2018, A&A, 611, 18 Google Scholar
Murray, C., Peek, J. E. G., Lee, M.-Y., et al. 2018, ApJ, 862, 131 CrossRefGoogle Scholar
Mutschke, H. & Mohr, P. 2019, A&A, 625, 61 Google Scholar
Natta, A. & Testi, L. 2018, ASPC, 323, 279 Google Scholar
Nguyen, H., Dawson, J. R., Miville-Deschênes, M.-A., et al. 2018, ApJ, 862, 49 CrossRefGoogle Scholar
Pagani, L., Steinacker, J., Bacmann, A., et al. 2010, Science, 329, 1622 CrossRefGoogle Scholar
Planck, Collaboration 2011, A&A, 536, 22 Google Scholar
Planck, Collaboration 2014, A&A, 571, 11 Google Scholar
Planck, Collaboration 2015, A&A, 576, 106 Google Scholar
Planck, Collaboration 2016, A&A, 586, 132 Google Scholar
Reach, W. T., Heiles, C., Bernard, J.-P. 2015, ApJ, 811, 118 CrossRefGoogle Scholar
Reach, W. T., Bernard, J.-P., Jarrett, T. H., et al. 2017, ApJ, 851, 119 CrossRefGoogle Scholar
Rémy, Q., Grenier, I. A., Marshall, D. J., et al. 2018, A&A, 616, 71 Google Scholar
Roy, A., Martin, P. G., Polychroni, D., et al. 2013, ApJ, 763, 55 CrossRefGoogle Scholar
Siebenmorgen, S., Voshchinnikov, N. V., Bagnulo, S., et al. 2018, A&A, 611, 5 Google Scholar
Siebenmorgen, S., Voshchinnikov, N. V., Bagnulo, S., et al. 2014, A&A, 561, 82Google Scholar
Steinacker, J., Andersen, M., Thi, W.-F., et al. 2015, A&A, 582, 70 Google Scholar
Stepnik, B., Abergel, A., Bernard, J.-P., et al. 2003, A&A, 398, 551 Google Scholar
Tanaka, H., Inaba, S., Nakazawa, K. 1996, Icarus, 123, 450 CrossRefGoogle Scholar
Wang, S., Gao, J., Jiang, B. W., et al. 2013, ApJ, 773, 30 CrossRefGoogle Scholar
Wang, S., Li, A., Jiang, B. W. 2015, ApJ, 811, 38 CrossRefGoogle Scholar
Weidenschilling, S. J. 1977, Ap&SS, 51, 153 Google Scholar
Weidling, R., Güttler, C., Blum, J., et al. 2009, ApJ, 696, 2036 CrossRefGoogle Scholar
Windmark, F., Birnstiel, T., Güttler, C., et al. 2012, A&A, 540, 73 Google Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., et al. 2001, ApJ, 547, 872 CrossRefGoogle Scholar
Ysard, N., Koehler, M., Jones, A. P., et al. 2016, A&A, 588, 44 Google Scholar
Zubko, V., Dwek, E., Arendt, R. G. 2004, ApJSS, 152, 211 CrossRefGoogle Scholar