No CrossRef data available.
Published online by Cambridge University Press: 12 August 2011
The theory of the Milky Way formation, in the framework of the ΛCDM model, predicts galactic stellar halos to be built from multiple accretion events starting from the first structure to collapse in the Universe.
Evidences in the past few decades have indicated that the Galactic halo consists of two overlapping structural components, an inner and an outer halo. We provide a set of numerical N-body simulations aimed to study the formation of the outer Milky Way (MW) stellar halo through accretion events between a (bulgeless) MW-like system and a satellite galaxy. After these minor mergers take place, in several orbital configurations, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions of the mergers where a signal of retrograde rotation in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the MW stellar halo.
Our results show that the dynamical friction has a fundamental role in assembling the final velocity distributions originated by different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer MW halo.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.