Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T07:34:39.813Z Has data issue: false hasContentIssue false

The dual nature of the Milky Way stellar halo

Published online by Cambridge University Press:  12 August 2011

Anna Curir
Affiliation:
INAF-Astronomical Observatory of Torino, strada Osservatorio 20, 10025 Pino Torinese (Torino)Italy email: [email protected]
Giuseppe Murante
Affiliation:
INAF-Astronomical Observatory of Torino, strada Osservatorio 20, 10025 Pino Torinese (Torino)Italy email: [email protected]
Eva Poglio
Affiliation:
Dept. of Physics, Turin University, Italy email: [email protected]
Álvaro Villalobos
Affiliation:
INAF - Astronomical Observatory of Trieste, via Tiepolo 11, Trieste, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of the Milky Way formation, in the framework of the ΛCDM model, predicts galactic stellar halos to be built from multiple accretion events starting from the first structure to collapse in the Universe.

Evidences in the past few decades have indicated that the Galactic halo consists of two overlapping structural components, an inner and an outer halo. We provide a set of numerical N-body simulations aimed to study the formation of the outer Milky Way (MW) stellar halo through accretion events between a (bulgeless) MW-like system and a satellite galaxy. After these minor mergers take place, in several orbital configurations, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions of the mergers where a signal of retrograde rotation in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the MW stellar halo.

Our results show that the dynamical friction has a fundamental role in assembling the final velocity distributions originated by different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer MW halo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Carollo, D., Beers, T. C., Sun Lee, Y., Chiba, M. E.Norris, J. E., Wilhelm, R., Sivarani, T., Marsteller, B., Munn, J. A., Bailer-Jones, C. A. L., Re Fiorentin, P. & York, D. G. 2007, Nature, 450, 1020CrossRefGoogle Scholar
Murante, G., Poglio, E., Curir, A. & Villalobos, A. 2010, ApJ (Letters), 716, L115CrossRefGoogle Scholar
Chandrasekar, S. 1943, ApJ, 97, 255CrossRefGoogle Scholar
Binney and Tremaine 1987, in: Galactic Dynamics (Princeton, NJ: Princeton University Press), p. 427Google Scholar
Navarro, J. F., Frenk, C. S. & White, S. D. M. 1997, ApJ, 190, 493CrossRefGoogle Scholar
Hernquist, L. 1990, ApJ, 356, 359CrossRefGoogle Scholar
Springel, V. 2005, ApJ, 364, 1105Google Scholar
Read, J. I., Lake, G., Agertz, O. & Debattista, V. P. 2008, MNRAS 389, 1041CrossRefGoogle Scholar
Bullock, J., Dekel, A., Kolatt, T., Kravtsov, A. V., Klypin, A. & Porciani, C. and Primack, J. 2001, ApJ, 555, 240CrossRefGoogle Scholar
Sales, L. V., Helmi, A., Starkenburg, E., MorrisonH., L. H., L., Engle, E., Harding, P., Mateo, M., OlszewskiE., W. E., W. & Sivarani, T. 2008, MNRAS 389, 1391CrossRefGoogle Scholar
Brunino, R., Trujillo, I., Pearce, F. R. & Thomas, P. A. 2007, MNRAS 375, 184CrossRefGoogle Scholar