Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:36:54.573Z Has data issue: false hasContentIssue false

Do falling planets cause stellar spin-up?

Published online by Cambridge University Press:  10 November 2011

D. J. A. Brown
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK. email: [email protected]
A. Collier Cameron
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK. email: [email protected]
C. Hall
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK. email: [email protected]
L. Hebb
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the tidal interactions between hot Jupiter extra-solar planets and their host stars in an effort to characterise the effects of such interactions on stellar rotation. We study the WASP-18 and WASP-19 systems, showing that in both cases tidal interactions cause the eventual spiral in of the the planet towards the Roche limit. We find that for both systems this process will cause significant spin up of the host star, independent of the precise value for the tidal quality factors. By fitting tidal evolution models to observed parameters, we are able to determine that WASP-19 b is currently spiralling in, and that it has a very short remaining lifetime ~ 3 Myr.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Barker, A. J. & Ogilvie, G. I. 2009, MNRAS, 395, 2268CrossRefGoogle Scholar
Barnes, S. A. 2007, ApJ, 669, 1167CrossRefGoogle Scholar
Brown, D. J. A, Collier Cameron, A., Hall, C., Hebb, L., & Smalley, B. 2011, MNRAS, 415, 605CrossRefGoogle Scholar
Collier Cameron, A., Davidson, V. A., Hebb, L., Skinner, G., et al. 2009, MNRAS, 400, 451CrossRefGoogle Scholar
Dobbs-Dixon, I., Lin, D. N. C. & Mardling, R. A. 2004, ApJ, 610, 464CrossRefGoogle Scholar
Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., Lister, T. A., et al. 2010, ApJ, 708, 224CrossRefGoogle Scholar
Hellier, C., Anderson, D. R., Cameron, A. C., Gillon, M., et al. 2009, Nature, 460, 1098CrossRefGoogle Scholar
Hut, P. 1980, A&A, 92, 167Google Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008, ApJ, 678, 1396CrossRefGoogle Scholar
Jackson, B., Barnes, R., & Greenberg, R. 2009, ApJ, 698, 1357CrossRefGoogle Scholar
Leconte, J., Chabrier, G., Baraffe, I., & Levrard, B. 2010, A&A, 516, A64Google Scholar
Mardling, R. A. & Lin, D. N. C. 2002, ApJ, 573, 829CrossRefGoogle Scholar
Meibom, S., Mathieu, R. D., & Stassun, K. G. 2009, ApJ, 695, 679CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Sozzetti, A., Torres, G., Charbonneau, D., Latham, , et al. 2007, ApJ, 664, 1190CrossRefGoogle Scholar
Weber, E. J. & Davis, L. Jr. 1967, ApJ, 148, 217CrossRefGoogle Scholar