Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T20:31:32.824Z Has data issue: false hasContentIssue false

Distances, depth structure, and kinematics of the Magellanic Clouds from disentangling spectra of eclipsing binaries and Cepheids

Published online by Cambridge University Press:  26 February 2013

P. Hadrava
Affiliation:
Astronomical Institute, Academy of Sciences, Boční II 1401, CZ 141 31 Praha 4, Czech Republic email: [email protected]
S. Štefl
Affiliation:
European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19, Chile email: [email protected], [email protected]
R. Klement
Affiliation:
Department of Theoretical Physics and Astrophysics, Masaryk University, CZ 611 37 Brno, Czech Republic email: [email protected]
C. Martayan
Affiliation:
European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19, Chile email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectroscopy and photometry of eclipsing binaries and Cepheids (using the Baade–Wesselink method) yield primary distance markers applicable to the Local Group of galaxies. The technique of disentangling spectra has proved helpful in resolving stellar physical parameters. Our method also allows us to disentangle interstellar absorption lines and, thus, to complement the radial-velocity structure of the interstellar medium with an (otherwise unattainable) upper limit to its distance. The mapping of the spatial and kinematic structure of the stellar and interstellar components of the Magellanic Clouds and Stream enables constraining their tidal evolution and, thus, of the mass of the Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Baade, W. 1926, Astron. Nachr., 228, 359Google Scholar
Hadrava, P. 1995, A&AS, 114, 393Google Scholar
Hadrava, P. 1997, A&AS, 122, 581Google Scholar
Hadrava, P. 2004, Publ. Astron. Inst. Acad. Sci. Czech Rep., 92, 15Google Scholar
Hadrava, P. 2009, Disentangling of spectra: theory and practice, arXiv:0909.0172Google Scholar
Hadrava, P. 2012, in: From Interacting Binaries to Exoplanets: Essential Modeling Tools (Richards, M. T., & Hubeny, I., eds.), Proc. IAU Symp., 282, 351Google Scholar
Hadrava, P., Šlechta, M. & Škoda, P. 2009, A&A, 507, 397Google Scholar
Kervella, P, Fouqué, P., et al. 2004 ApJ, 604, L113Google Scholar
Klement, R. 2012, Diploma thesis, Masaryk Univ. Brno, Czech Rep. (https://is.muni.cz/th/269086/prif_m/diplomka_lecldsnr.pdf)Google Scholar
Leavitt, H. S. 1908, Ann. Harvard Coll. Obs., 60, 87Google Scholar
North, P., Gauderon, R., Barblan, F., & Royer, F. 2011, A&A, 520, A74Google Scholar
Růžička, A., Palouš, J., & Theis, C. 2007, A&A, 461, 155Google Scholar
Udalski, A., Soszynski, I., Szymanski, M., et al. 1998, Acta Astron., 48, 563Google Scholar
Wesselink, A. J. 1946, Bull. Astron. Inst. Neth., 10, 91Google Scholar
Wilson, R. E. 2008, ApJ, 672, 575Google Scholar
Zwahlen, N., North, P., Debernardi, Y., et al. 2004, A&A, 425, L45Google Scholar