Hostname: page-component-599cfd5f84-ncv4z Total loading time: 0 Render date: 2025-01-07T06:17:05.188Z Has data issue: false hasContentIssue false

Dissecting the Formation Histories of Galaxies with Stellar Populations Models

Published online by Cambridge University Press:  13 April 2010

Ivo Labbé*
Affiliation:
Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

How did galaxies evolve from primordial fluctuations to the well-ordered but diverse population of disk and elliptical galaxies that we observe today? Stellar populations synthesis models have become a crucial tool in addressing this question by helping us to interpret the spectral energy distributions of present-day galaxies and their high redshift progenitors in terms of fundamental characteristics such as stellar mass and age. I will review our current knowledge on the evolution of stellar populations in early- and late type galaxies at z < 1 and the tantalizing – but incomplete – view of the stellar populations in galaxies at 1 < z < 3, during the global peak of star formation. Despite great progress, many fundamental questions remain: what processes trigger episodes of galaxy-scale star formation and what quenches them? To what degree does the star formation history of galaxies depend on the merger history, (halo) mass, or local environment? I will discuss some of the challenges posed in interpreting current data and what improved results might be expected from new observational facilities in the near- and more distant future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bell, E. F., et al. 2004, ApJ, 608, 752CrossRefGoogle Scholar
Bell, E. F., Zheng, X. Z., Papovich, C., Borch, A., Wolf, C., & Meisenheimer, K. 2007, ApJ, 663, 834CrossRefGoogle Scholar
Bezanson, R., van Dokkum, P. G., Tal, T., Marchesini, D., Kriek, M., Franx, M., & Coppi, P. 2009, ApJ, 697, 1290CrossRefGoogle Scholar
Blanton, M. R. & Roweis, S. 2007, AJ, 133, 734CrossRefGoogle Scholar
Brammer, et al. 2009, ApJ, 706 173CrossRefGoogle Scholar
Brinchmann, J. & Ellis, R. S. 2000, ApJL, 536, L77CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Bundy, K., Ellis, R. S., & Conselice, C. J. 2005, ApJ, 625, 621CrossRefGoogle Scholar
Cappellari, M., et al. 2009, ApJL, 704, L34CrossRefGoogle Scholar
Chen, et al. 2003, ApJ, 586, 745CrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363CrossRefGoogle Scholar
Coil, A. L. et al. 2008, ApJ, 672, 153CrossRefGoogle Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595CrossRefGoogle Scholar
Daddi, E. et al. 2005, ApJL, 631, L13CrossRefGoogle Scholar
Davis, M. et al. 2003, in SPIE Vol. 4834, pp 161-172Google Scholar
Dickinson, M. et al. 2003, ApJ, 587, 25CrossRefGoogle Scholar
Faber, S. M. et al. 2007, ApJ, 665, 265CrossRefGoogle Scholar
Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 647, 128CrossRefGoogle Scholar
Förster Schreiber, N. M. et al. 2009, ApJ, 706, 1364CrossRefGoogle Scholar
Gebhardt, K. et al. 2003, ApJ, 597, 239CrossRefGoogle Scholar
Genzel, R. et al. 2008, ApJ, 687, 59CrossRefGoogle Scholar
Kauffmann, G. et al. 2003a, MNRAS, 341, 33CrossRefGoogle Scholar
Khochfar, S. & Silk, J. 2009, ApJL, 700, L21CrossRefGoogle Scholar
Kriek, M. et al. 2008, ApJ, 677, 219CrossRefGoogle Scholar
Kobulnicky, H. A. et al. 2003, ApJ, 599, 1006CrossRefGoogle Scholar
Kotulla, R. et al. 2009, MNRAS, 396, 462CrossRefGoogle Scholar
Leitherer, C. et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Le Févre, O. et al. 2004, A&A, 428, 1043Google Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Marchesini, D., van Dokkum, P. G., Förster Schreiber, N. M., Franx, M., Labbé, I., & Wuyts, S. 2009, ApJ, 701, 1765CrossRefGoogle Scholar
Naab, T. et al. 2007, ApJ, 658, 710720CrossRefGoogle Scholar
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJL, 699, L178CrossRefGoogle Scholar
Panter, B., Jimenez, R., Heavens, A. F., & Charlot, S. 2008, MNRAS, 391, 1117CrossRefGoogle Scholar
Papovich, C. et al. 2006, ApJ, 640, 92CrossRefGoogle Scholar
Tremonti, C. A. et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
Trujillo, I. et al. 2006, MNRAS, 373, L36CrossRefGoogle Scholar
Tojeiro, R., Wilkins, S., Heavens, A. F., Panter, B., & Jimenez, R. 2009, ApJS, 185, 1CrossRefGoogle Scholar
Scoville, N. et al. 2007, ApJS, 172, 1CrossRefGoogle Scholar
Shen, S., Mo, H. J., White, S. D. M., Blanton, M. R., Kauffmann, G., Voges, W., Brinkmann, J., & Csabai, I. 2003, MNRAS, 343, 978CrossRefGoogle Scholar
Vazdekis, A. 1999, ApJ, 513, 224CrossRefGoogle Scholar
Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., Toft, S., Kriek, M., & Labbe, I. 2009, submitted to ApJ, arXiv:0906.4786Google Scholar
Wuyts, S., Labbé, I., Schreiber, N. M. F., Franx, M., Rudnick, G., Brammer, G. B., & van Dokkum, P. G. 2008, ApJ, 682, 985CrossRefGoogle Scholar
Wolf, C., Meisenheimer, K., Rix, H.-W., Borch, A., Dye, S., & Kleinheinrich, M. 2003, A&A, 401, 73Google Scholar
van der Wel, A. et al. 2007, ApJ, 670, 206CrossRefGoogle Scholar
van Dokkum, P. G. et al. 2006, ApJL, 638, L59CrossRefGoogle Scholar
van Dokkum, P. G. et al. 2008, ApJL, 677, L5CrossRefGoogle Scholar
van Dokkum, P. G., Kriek, M., & Franx, M. 2009, Nature, 460, 717CrossRefGoogle Scholar
York, D. G. et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar