Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:08:01.307Z Has data issue: false hasContentIssue false

The disruption of the Magellanic Stream

Published online by Cambridge University Press:  01 July 2008

J. Bland-Hawthorn*
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present evidence that the accretion of warm gas onto the Galaxy today is at least as important as cold gas accretion. For more than a decade, the source of the bright Hα emission (up to 750 mR†) along the Magellanic Stream has remained a mystery. We present a hydrodynamical model that explains the known properties of the Hα emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker Hα (100–200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In order to light up much of the Stream as observed, it must have a small angle of attack (≈ 20°) to the halo, and this may already find support in new H i observations. Another prediction is that the Balmer ratio (Hα/Hβ) will be substantially enhanced due to the slow shock; this will soon be tested by upcoming WHAM observations in Chile. We find that the clouds are evolving on timescales of 100–200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate (≳ 0.1 M yr−1). The ablated material falls onto the Galaxy as a warm drizzle; diffuse ionized gas at 104 K is an important constituent of galactic accretion. The observed Hα emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. When the ionized component of the infalling gas is accounted for, the rate of gas accretion is ≳ 0.4 M yr−1, roughly twice the rate deduced from H i observations alone.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Besla, G., Kallivayalil, N., Hernquist, L., et al. 2007, ApJ, 668, 949CrossRefGoogle Scholar
Binney, J., Dehnen, W., & Bertelli, G. 2000, MNRAS, 318, 658CrossRefGoogle Scholar
Bland-Hawthorn, J., Veilleux, S., Cecil, G. N., Putman, M. E., Gibson, B. K., & Maloney, P. R. 1998, MNRAS, 299, 611CrossRefGoogle Scholar
Bland-Hawthorn, J. & Maloney, P. R. 1999, ApJ, 510, L33CrossRefGoogle Scholar
Bland-Hawthorn, J. & Maloney, P. R. 2002, in Mulchaey, J. S. & Stocke, J. (eds.), Extragalactic Gas at Low Redshift, ASP-CS, 254, 267Google Scholar
Bland-Hawthorn, J., Sutherland, R., Agertz, O., & Moore, B. 2007, ApJ, 670, L109CrossRefGoogle Scholar
Bregman, J. N. 2007, ARAA, 45, 221CrossRefGoogle Scholar
Brüns, C., Kerp, J., Staveley-Smith, L., et al. 2005, A&A, 432, 45Google Scholar
Chevalier, R. A. & Raymond, J. C. 1978, ApJ, 225, L27CrossRefGoogle Scholar
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108CrossRefGoogle Scholar
Ferrara, A. & Field, G. B. 1994, ApJ, 423, 665CrossRefGoogle Scholar
Flynn, C., Holmberg, J., Portinari, L., Fuchs, B., & Jahreiß, H. 2006, MNRAS, 372, 1149CrossRefGoogle Scholar
Gibson, B. K., Giroux, M. L., Penton, S. V., Putman, M. E., Stocke, J. T., & Shull, J. M. 2000, AJ, 120, 1830CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006, ApJ, 652, 1213CrossRefGoogle Scholar
Lockman, F. J., Benjamin, R. A., Heroux, A. J., & Langston, G. I. 2008, ApJ, 679, L21CrossRefGoogle Scholar
Madsen, G. J., Haffner, L. M., & Reynolds, R. J. 2002, in Taylor, A. R., Landecker, T. L., & Willis, A. G. (eds.), Seeing Through the Dust. The Detection of H i and the Exploration of the ISM in Galaxies, ASP-CS, 276, 96Google Scholar
Maloney, P. R. & Bland-Hawthorn, J. 1999, ApJ, 522, L81CrossRefGoogle Scholar
Maloney, P. 1993, ApJ, 414, 41CrossRefGoogle Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509CrossRefGoogle Scholar
Miyamoto, M. & Nagai, R. 1975, PASJ, 27, 533Google Scholar
Moore, B. & Davis, M. 1994, ApJ, 270, 209Google Scholar
Peek, J. E. G., Putman, M. E., & Sommer-Larsen, J. 2008, ApJ, 674, 227CrossRefGoogle Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024CrossRefGoogle Scholar
Putman, M. E., Bland-Hawthorn, J., Veilleux, S., Gibson, B. K., Freeman, K. C., & Maloney, P. R. 2003, ApJ, 597, 948CrossRefGoogle Scholar
Quilis, V. & Moore, B. 2001, ApJ, 555, L95CrossRefGoogle Scholar
Rosen, A. & Smith, M. D. 2004, MNRAS, 347, 1097CrossRefGoogle Scholar
Sembach, K. R., Howk, J. C., Savage, B. D., Shull, J. M., & Oegerle, W. R. 2001, ApJ, 561, 573CrossRefGoogle Scholar
Sembach, K. R., Wakker, B. P., Savage, B. D., et al. 2003, ApJS, 146, 165CrossRefGoogle Scholar
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83CrossRefGoogle Scholar
Smith, M. C., Ruchti, G. R., Helmi, A., et al. 2007, MNRAS, 379, 755CrossRefGoogle Scholar
Wakker, B. P., York, D. G., Howk, J. C., et al. 2007, ApJ, 207, 670, L113Google Scholar
Weiner, B. J., Vogel, S. N., & Williams, T. B. 2002, in Mulchaey, J. S. & Stocke, J. (eds.), Extragalactic Gas at Low Redshift, ASP-CS, 254, 256Google Scholar
Westmeier, T. & Koribalski, B. S. 2008, MNRAS, 388, L29CrossRefGoogle Scholar
Wilkinson, M. I. & Evans, N. W. 1999, MNRAS, 310, 645CrossRefGoogle Scholar
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166CrossRefGoogle Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 1995, ApJ, 453, 673CrossRefGoogle Scholar