Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T15:42:43.320Z Has data issue: false hasContentIssue false

Disk Stability and Turbulence Generation: Effects of the Stellar Component

Published online by Cambridge University Press:  01 June 2008

Woong-Tae Kim*
Affiliation:
Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-742, Republic of Korea email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic disks consist of both stars and gas. The stars gravitationally influence the gas either in disks at large or within spiral arms, leading to the formation of giant clouds and turbulence driving in the gas. In featureless disks as in flocculent galaxies, swing amplification operating in a combined star-gas disk is efficient to form bound condensations and feed a significant level of random gas motions. This occurs when the gaseous Toomre parameter is less than 1.4 for the stellar parameters similar to the solar neighbourhood conditions. In disks with spiral features, on the other hand, spiral-arm spurs and associated giant clouds develop as a consequence of magneto-Jeans instability in which magnetic tension counterbalances the stabilizing Coriolis force. Spiral shocks are inherently unstable when the vertical dimension is taken into account, exhibiting flapping motions of the shock front. This naturally converts the kinetic energy in galaxy rotation into random kinetic energy of the gas. The resulting turbulent motions are supersonic and persist despite strong shock dissipation. Thermal instability occurring in gas flows across spiral arms prompts phases transitions that produce a significant fraction of thermally-unstable, intermediate-temperature gas in the postshock expansion zones.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Blitz, L. & Shu, F. H. 1980, ApJ, 238, 148CrossRefGoogle Scholar
Elmegreen, B. G. 2007, ApJ, 668, 1064CrossRefGoogle Scholar
Elmegreen, B. G. 1995a, in The 7th Guo Shoujing Summer School on Astrophysics: Molecular Clouds and Star Formation, eds. Yuan, C. & You, Hunhan (Singapore:World Scientific), 149Google Scholar
Elmegreen, B. G. 1995b, MNRAS, 275, 944CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 1983, MNRAS, 203, 31CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARAA, 42, 211CrossRefGoogle Scholar
Elmegreen, B. G. 1994, ApJ, 433, 39CrossRefGoogle Scholar
Jog, C. J. 1996, MNRAS, 278, 209CrossRefGoogle Scholar
Jog, C. J. & Solomon, P. M. 1984, ApJ, 276, 127CrossRefGoogle Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2006, ApJ, 649, L13CrossRefGoogle Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2008, ApJ, in press; arXiv:0804.0139Google Scholar
Kim, W.-T. & Ostriker, E. C. 2001, ApJ, 559, 70CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E. C. 2002, ApJ, 570, 132CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E. C. 2006, ApJ, 646, 213CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E. C. 2007, ApJ, 660, 1232CrossRefGoogle Scholar
Kim, W.-T.Ostriker, E. C & Stone, J. M. 2003, ApJ, 599, 1151CrossRefGoogle Scholar
Kritsuk, A. G. & Norman, M. L. 2002, ApJ, 569, L127CrossRefGoogle Scholar
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2006, ApJ, 626, 823CrossRefGoogle Scholar
Lynden-Bell, D. 1966, Observatory, 86, 57Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Rev. Mod. Phys., 76, 125CrossRefGoogle Scholar
Martin, C. L. & Kennicutt, R. C. 2001, ApJ, 555, 301CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 567CrossRefGoogle Scholar
Ostriker, E. C. 2006, in IAU Symp. 237, Triggered Star Formation in a Turbulent ISM, ed. Elmegreen, B. G. & Palous, J. (Cambridge: Cambridge Univ. Press), 70Google Scholar
Petric, A. O. & Rupen, M. P. 2007, AJ, 134, 1952CrossRefGoogle Scholar
Piontek, R. A. & Ostriker, E. C. 2004, ApJ, 601, 905CrossRefGoogle Scholar
Rafikov, R. R. 2001, MNRAS, 323, 445CrossRefGoogle Scholar
Roberts, W. W. 1969, ApJ, 158, 123CrossRefGoogle Scholar
Santillán, A., Kim, J., Franco, J., Martos, M., Hong, S.S., & Ryu, D. 2000, ApJ, 545, 353CrossRefGoogle Scholar
Toomre, A. 1981, in Structure and Evolution of Normal Galaxies, eds. Fall, S. M. & Lynden-Bell, D. (Cambridge:Cambridge Univ. Press), 111Google Scholar
van Zee, L., & Bryant, J. 1999, AJ, 118, 2172CrossRefGoogle Scholar
Williams, J. P., Blitz, L., & McKee, C. F. 2000, in Protostars and Planets IV, eds. Mannings, Boss, & Russell, (Tuscon:Univ. of Arizona press), 97Google Scholar
Woodward, P. R. 1975, ApJ, 195, 61CrossRefGoogle Scholar