Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T01:33:29.540Z Has data issue: false hasContentIssue false

Direct imaging and spectroscopy of planets and brown dwarfs in wide orbits

Published online by Cambridge University Press:  10 November 2011

Mariangela Bonavita
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4 Toronto ONCanada email: [email protected]
Ray Jayawardhana
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4 Toronto ONCanada email: [email protected]
Markus Janson
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4 Toronto ONCanada email: [email protected]
David Lafrenière
Affiliation:
Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent direct imaging discoveries of exoplanets have raised new questions about the formation of very low-mass objects in very wide orbits. Several explanations have been proposed, but all of them run into some difficulties, trying to explain all the properties of these objects at once. Here we present the results of a deep adaptive optics imaging survey of 85 stars in the Upper Scorpius young association with Gemini, reaching contrasts of up to 10 magnitudes. In addition to identifying numerous stellar binaries and a few triples, we also found several interesting sub-stellar companions. We discuss the implications of these discoveries, including the possibility of a second pathway to giant planet formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577CrossRefGoogle Scholar
Boss, A. P. 1997, Science, 276, 1836CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., Saumon, D., & Lodders, K. 2008, ApJ 683, 1104CrossRefGoogle Scholar
Hodapp, K. W., et al. 2003, PASP 115, 1388CrossRefGoogle Scholar
Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C., & Krist, J. 2008, Science 322, 1345CrossRefGoogle Scholar
Kraus, A. L. & Hillenbrand, L. A. 2008, ApJL 686, L111CrossRefGoogle Scholar
Lafrenière, D., Jayawardhana, R., & van Kerkwijk, M. H. 2008, ApJL 689, L153CrossRefGoogle Scholar
Lafrenière, D., Jayawardhana, R., & van Kerkwijk, M. H. 2010, ApJ 719, 497CrossRefGoogle Scholar
Lagrange, A., Gratadour, D., Chauvin, G., Fusco, T., Ehrenreich, D., Mouillet, D., Rousset, G., Rouan, D., Allard, F., Gendron, E., Charton, J., Mugnier, L., Rabou, P., Montri, J., & Lacombe, F. 2009, A&A 493, L21Google Scholar
Lagrange, A., Bonnefoy, M., Chauvin, G., Apai, D., Ehrenreich, , Boccaletti, A., Gratadour, D., Rouan, D., Mouillet, D., & Lacour, S., Kasper, M. 2010, Science 329, 57CrossRefGoogle Scholar
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Science 322, 1348CrossRefGoogle Scholar
Quanz, S. P., Meyer, M. R., Kenworthy, M. A., Girard, J. H. V., Kasper, M., Lagrange, A. M., Apai, D., Boccaletti, A., Bonnefoy, M., Chauvin, G., Hinz, P. M. & Lenzen, R.ApJL 722, L49CrossRefGoogle Scholar
Padoan, P. & Nordlund, A. 2002, ApJ, 576, 870CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62CrossRefGoogle Scholar