Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T08:05:24.606Z Has data issue: false hasContentIssue false

Dim Baryons in the Cosmic Web

Published online by Cambridge University Press:  01 June 2007

Chris D. Impey*
Affiliation:
Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of baryons beyond galaxies is descibed. The majority of the baryons, which represent 4% of the cosmic mass and energy budget, lie far from individual galaxies in the diffuse intergalactic medium (IGM). Many of these baryons are in a warm phase that can be probed by quasar absorption in the Lyman-α line of hydrogen. The mature field of quasar spectroscopy can diagnose the location, physical state, metallicity, and general geometry of this gas, which is called the “cosmic web.” The remainder of the gas is kept very hot by infall and shocks and is mostly in higher density regions such as filaments, groups and clusters. The hot gas is only detectable via X-rays and the absorption of highly ionized species of heavy elements. The baryons in low density regions of space are excellent tracers of underlying dark matter. The evolution of the cosmic web indicates where to look for the baryons in collapsed objects but the overall inefficiency of galaxy formation has conspired to keep most baryons dark.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bowen, D. B., Pettini, M., & Blades, C. J. 2002, ApJ, 580, 169CrossRefGoogle Scholar
Bregman, J. N., & Lloyd-Davis, E. J. 2007, ApJ, in press, astro-ph07071699Google Scholar
Coc, A. 2006, in International Symposium on Nuclear Astrophysics – Nuclei in the Cosmos. X. (CERN, European Organization for Nuclear Research), p. 11Google Scholar
Davé, R., Cen, R., Ostriker, J. P., Bryan, G. L., Hernquist, L., Katz, N., Weinberg, D. H., Norman, M. L., & O'Shea, B. 2001, ApJ, 552, 473CrossRefGoogle Scholar
Green, J. C. 2001, Proc. SPIE, 4498, 229CrossRefGoogle Scholar
Hernandez-Monteagudo, C., Trac, H., Verde, L., & Jimenez, R. 2006, ApJ, 652, L1CrossRefGoogle Scholar
Hiyashi, E., & Navarro, J. N. 2007, MNRAS, 373, 1117CrossRefGoogle Scholar
Impey, C. D., Petry, C. E., & Flint, K. P. 1999, ApJ, 524, 536CrossRefGoogle Scholar
Kamionkowski, M., Jungman, G., Kosowsky, A. & Spergel, D. N. 1995, in Holt, S. & Sonneborn, F. (eds.), Sixth Annual Octboer Astrophysics Conference, ASP Conference Series (San Francisco: ASP), vol. 99, p. 74Google Scholar
Kawahara, H., Yoshikawa, K, Sasaki, S., Suto, Y., Kawai, N., Mitsuda, K., Ohashi, T., & Yamasaki, N. 2006, PASJ, 58, 657CrossRefGoogle Scholar
Lehner, N., Savage, B. D., Richter, P., Sembach, K. R., Tripp, T. M., & Wakker, B. P. 2007, ApJ, 658, 680CrossRefGoogle Scholar
Martin, C. L. 2006, in Mason, J. W. (ed.) Astrophysics Update 2, (Heidelberg: Springer Verlag), p. 337CrossRefGoogle Scholar
McGaugh, S. S., Rubin, V. C., & de Blok, W. J. G. 2002, AJ, 122, 2381CrossRefGoogle Scholar
McLin, K. M., Stocke, J. T., Weymann, R. J., Penton, S. V., & Shull, M. J. 2002, ApJ, 574, 115CrossRefGoogle Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, 19CrossRefGoogle Scholar
Penton, S. V., Shull, M. J., & Stocke, J. T. 2000, ApJ, 544, 150CrossRefGoogle Scholar
Penton, S. V., Stocke, J. T., & Shull, M. J. 2002, ApJ, 565, 720CrossRefGoogle Scholar
Petitjean, P., & Charlot, S. (eds.) Structure and Evolution of the Intergalactic Medium from QSO Absorption Line Systems (Paris: Editions Frontières)Google Scholar
Prochaska, J. X., Wolfe, A. M., Howk, J. C., Gawsier, E., Burles, S. M. & Cooke, J. 2007, ApJSuppl, 171, 29CrossRefGoogle Scholar
Rassera, Y., & Teyssier, R. 2006, A&A, 445, 1Google Scholar
Rauch, M., Miralda-Escude, J., Sargent, W., Barlow, T., Weinberg, D., Hernquist, L., Katz, N., Cen, R., & Ostriker, J. 1997, ApJ, 489, 7CrossRefGoogle Scholar
Scott, J., Bechtold, J. B., Morita, M., Dobrzycki, A., & Kulkarni, V. 2002, ApJ, 571, 665CrossRefGoogle Scholar
Sembach, K. R., Wakker, B. P., Savage, B. D., Richter, P., Meade, M., Shull, J. M., Jenkins, E. B., Sonneborn, G., & Moos, H. W. 2002, ApJS, 146, 165CrossRefGoogle Scholar
Shull, M. J., Penton, S. V., Stocke, J. T., Giroux, M. L., van Gorkom, J. H., Lee, Y. H., & Carilli, C. 1998, AJ, 116, 2094CrossRefGoogle Scholar
Stocke, J. T., Penton, S. V., Danforth, C. W., Shull, M. J., Tumlinson, J., & McLin, K. M. 2006, ApJ, 641, 217CrossRefGoogle Scholar
Tripp, T. M., et al. 2002, ApJ, 575, 679CrossRefGoogle Scholar
Tripp, T. M, Sembach, K. R., Bowen, D. V., Savage, B. D., Jenkins, E. B., Lehner, N., & Richter, P. 2007, ApJSuppl, in press, astro-ph07061214Google Scholar
Wang, Q. D., Yao, Y., Tripp, T. M., Fang, T.-T., Cui, W., Nicastro, F., Mathur, S., Williams, R. J., Song, L., & Croft, R. 2005, ApJ, 635, 386CrossRefGoogle Scholar
Wakker, B. P., Savage, B. D., Sembach, K. R., Richter, P., & Fox, A. J. 2005, in Braun, R. (ed.) Extra-Planar Gas ASP Conference Series (San Francisco: ASP), vol. 331, p. 11Google Scholar
Zhang, Y., Anninos, P., Norman, M. L., & Meiksin, A. 1997, ApJ, 485, 496CrossRefGoogle Scholar
Zwaan, M., Meyer, M. J, Staveley-Smith, L., and Webster, R. L. 2005 MNRAS, 359, 30CrossRefGoogle Scholar