Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:51:35.507Z Has data issue: false hasContentIssue false

Diffuse Interstellar Bands: Families and Correlations

Published online by Cambridge University Press:  21 February 2014

J. Krełowski*
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Faculty of Physics, Astronomy and Applied Informatics, Grudzidzka 5 Pl-87-100 Toruń, Poland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term “families of diffuse bands” (DIBs) appeared in 1986/87 when my collaborators: Gordon A.H. Walker, Bengt E. Westerlund and I found that the strength ratio of the major DIBs 5780 and 5797 is heavily variable. We proved that at the same E(B-V) the DIB intensities may vary by as much as a factor of three or more. A similar result was published by Karl Josafatsson and Ted Snow soon after. A decade later, we proved (with Chris Sneden) that certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so called σ and ζ type interstellar clouds. The former are characterized by very weak molecular features (but broad DIBs – very strong) while the latter by rather strong bands of simple radicals and weak broad DIBs. Currently we face a bunch of questions: are the DIB intensities related to those of certain molecular species, e.g. C2 as suggested by Lew Hobbs' and Ted Snow's group? Do the DIB profiles, found to be complex by Peter Sarre, depend on e.g. the rotational temperatures of simple, linear carbon species? Do the DIB profiles depend on the irradiation of interstellar clouds by nearby stars? The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. We thus face three players in the interstellar translucent clouds: dust particles, simple radicals and the DIB carriers. Apparently, their mutual relations depend on local physical parameters of intervening clouds; these relations are not clear yet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bondar, A. 2012, MNRAS, 423, 725Google Scholar
Fitzpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320Google Scholar
Galazutdinov, G. A., Musaev, F. A., Krełowski, J., & Walker, G. A. H. 2000, PASP, 112, 648Google Scholar
Galazutdinov, G. A., Moutou, C., Musaev, F. A., & Krełowski, J. 2002, AA, 384, 215CrossRefGoogle Scholar
Galazutdinov, G. A., Manicó, G., & Krełowski, J. 2006, MNRAS, 366, 1075Google Scholar
Galazutdinov, G. A., Locurto, G., Han, Inwoo, & Krełowski, J. 2008, PASP, 120, 178CrossRefGoogle Scholar
Heger, M. L. 1922, Lick Obs. Bull. 10, 146Google Scholar
Herbig, G. H. 1975, ApJ, 196, 129CrossRefGoogle Scholar
Herbig, G. H. 1988, ApJ, 331, 999Google Scholar
Herbig, G. H. & Soderblom, D. R. 1982, ApJ, 252, 610CrossRefGoogle Scholar
Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., Friedman, S. D., McCall, B. J., Oka, T., Rachford, B., Sonnentrucker, P., & Welty, D. E. 2007, ApJ, 705, 32Google Scholar
McCall, B. J. & Griffin, R. E. 2013, Proc. R. Soc. A, 469, 20120604CrossRefGoogle Scholar
Merrill, P. W. & Wilson, O. C. 1938, ApJ, 87, 9CrossRefGoogle Scholar
Jenniskens, P. & Desert, F.-X. 1994, AAS, 106, 39Google Scholar
Josafatsson, K. & Snow, T. P. 1987, ApJ, 319, 436Google Scholar
Krełowski, J. & Walker, G. A. H. 1987, ApJ, 312, 860CrossRefGoogle Scholar
Krełowski, J. & Westerlund, B. E. 1988, AA, 190, 339Google Scholar
Krełowski, J., Sneden, C., & Hiltgen, D. 1995, PSS 43, 1195Google Scholar
Krełowski, J. & Greenberg, J. M. 1999, AA, 346, 199Google Scholar
Krełowski, J., Galazutdinov, G. A., & Gnaciński, P. 2012, AN 333, 627Google Scholar
McCall, B. J., Drosback, M. M., Thorburn, J. A., York, D. G., Friedman, S. D., Hobbs, L. M., Rachford, B. L., Snow, T. P., Sonnentrucker, P., & Welty, D. E. 2010, ApJ, 708, 1628Google Scholar
Moutou, C., Krełowski, J., D'Hendecourt, L., & Jamroszczak, J. 1999, AA, 351, 680Google Scholar
Sarre, P. J., Miles, J. R., Kerr, T. H., Hibbins, R. E., Fossey, S. J., & Somerville, W. B. 1995, MNRAS, 277, L41Google Scholar
Snow, Theodore P., Welty, Daniel E., Thorburn, J., Hobbs, L. M., McCall, B. J., Sonnentrucker, P., & York, D. G. 2002, ApJ, 573, 670CrossRefGoogle Scholar
Thorburn, J. A., Hobbs, L. M., McCall, B. J., Oka, T., Welty, D. E., Friedman, S. D., Snow, T. P., Sonnentrucker, P., & York, D. G. 2003, ApJ, 584, 339Google Scholar
Weselak, T., Fulara, J., Schmidt, M. R., & Krełowski, J. 2001, AA, 377, 677Google Scholar
Weselak, T., Galazutdinov, G. A., Han, Inwoo, & Krełowski, J. 2010, MNRAS, 401, 1308Google Scholar