Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T20:49:44.889Z Has data issue: false hasContentIssue false

Diagnostics of non-thermal-distributions from solar flare EUV line spectra

Published online by Cambridge University Press:  24 September 2020

Elena Dzifčáková
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic email: [email protected]
Alena Zemanová
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic email: [email protected]
Jaroslav Dudík
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic email: [email protected]
Juraj Lörinčík
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectral line intensities observed by the Extreme Ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) during 2012 March 9 M6.3 flare were used to diagnose a presence of a non-thermal electron distribution represented by a κ-distribution. The diagnosed electron densities ($\approx 2 \times {10^{11}}{\rm{c}}{{\rm{m}}^{ - 3}}$) are affected only a little by the presence of the non-thermal distribution, and are within the uncertainties of observation. On the other hand, the temperature diagnostics based on the line ratios involving different ionization degrees is strongly affected by the type of the electron distribution. The distribution functions diagnosed from relative Fe line intensities demonstrate the presence of strongly non-thermal distributions during the impulsive phase of the flare and later their gradual thermalization.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bian, N. H., Emslie, A. G., Stackhouse, D. J., & Kontar, E. P. 2014, ApJ, 796, 142CrossRefGoogle Scholar
Brown, J. C. 1971, Solar Phys., 18, 489CrossRefGoogle Scholar
Dudík, J., Dzifčáková, E., Meyer-Vernet, N., et al. 2017, Solar Phys., 292, 100CrossRefGoogle Scholar
Dzifčáková, E., & Kulinová, A. 2010, Solar Phys., 263, 25CrossRefGoogle Scholar
Dzifčáková, E., & Dudík, J. 2013, ApJS, 206, 6CrossRefGoogle Scholar
Dzifčáková, E., Dudík, J., Kotrč, P., Fárník, F., & Zemanová, A. 2015, ApJS, 217, 14CrossRefGoogle Scholar
Dzifčáková, E., Zemanová, A., Dudík, J., Lörinčík, J. 2018, ApJ, 853, 158CrossRefGoogle Scholar
Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, SSRv, 159, 19CrossRefGoogle Scholar
Kašparová, J. & Karlický, M. 2009, Astron. Astrophys., 497, L13CrossRefGoogle Scholar
Maksimovic, M., Pierrard, V., & Lemaire, J. F. 1997, Astron. Astrophys., 324, 725Google Scholar
Oka, M., Ishikawa, S., Saint-Hilaire, P., Krucker, S., & Lin, R. P. 2013, ApJ, 764, 6CrossRefGoogle Scholar
Oka, M., Krucker, S., Hudson, H. S., & Saint-Hilaire, P. 2015, ApJ, 799, 129CrossRefGoogle Scholar
Olbert, S. 1968, in R. D. L. Carovillano & J. F. McClay (eds.), in Physics of the Magnetosphere (Dordrecht: Reidel), p. 641Google Scholar
Priest, E. & Forbes, T. 2000, Magnetic Reconnection (Cambridge: Cambridge Univ. Press)CrossRefGoogle Scholar
Woods, T. N., Eparvier, F. G., Hock, R., et al. 2012, Solar Phys., 275, 115CrossRefGoogle Scholar