Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T17:14:07.341Z Has data issue: false hasContentIssue false

Determining the Local Dark Matter Density with SDSS G-dwarf data

Published online by Cambridge University Press:  07 March 2018

Hamish Silverwood
Affiliation:
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martì Franquès 1, E08028 Barcelona, Spain email [email protected]
Sofia Sivertsson
Affiliation:
The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91Stockholm, Sweden
Justin Read
Affiliation:
Department of Physics, University of Surrey, Guildford, GU2 7XH, Surrey, UK
Gianfranco Bertone
Affiliation:
GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Pascal Steger
Affiliation:
Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbender et al. (2015), yielding a result of ρDM = 0.46+0.07−0.09 GeV cm−3 = 0.012+0.001−0.002 M pc−3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Sivertsson, S., Silverwood, H., Read, J. I., Bertone, G., & Steger, P., 2017, in preparation Google Scholar
Silverwood, H., Sivertsson, S., Steger, P., Read, J. I., & Bertone, G., 2016, Mon.Not.Roy.Astron.Soc. 459 (2016) no. 4, 41914208 Google Scholar
Binney, J. & Tremaine, S., 2008, Galactic Dynamics, Princeton University Press, 2008 CrossRefGoogle Scholar
Feroz, F. & Hobson, M. P., 2007, Mon.Not.Roy.Astron.Soc., 384 (2007), 449463 Google Scholar
Feroz, F., Hobson, M. P., & and Bridges, M., 2008, Mon.Not.Roy.Astron.Soc., 398 (2009), 16011614 Google Scholar
Feroz, F., Hobson, M. P., Cameron, E., & Pettitt, A. N. 2013, arXiv:1306.2144Google Scholar
Büdenbender, A., van de Ven, G., Watkins, L. L. 2015 Mon.Not.Roy.Astron.Soc., 452 (2015), 956968 Google Scholar
McKee, C. F., Parravano, A., Hollenbach, D. J. 2015 Astrophys. J., 814 (2015), 1336 CrossRefGoogle Scholar
Bovy, J., Rix, H-W., Schlafly, E. F., Nidever, D.L, Holtzman, J. A., Shetrone, M., Beers, T. C., 2016 Astrophys. J., 823 (2016), 3050 Google Scholar
Read, J. I., 2014 J. Phys. G, 41 (2014), 063101 Google Scholar