Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:47:22.869Z Has data issue: false hasContentIssue false

Determining PPN γ with Gaia's astrometric core solution

Published online by Cambridge University Press:  06 January 2010

David Hobbs
Affiliation:
Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden email: [email protected]
Berry Holl
Affiliation:
Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden email: [email protected]
Lennart Lindegren
Affiliation:
Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden email: [email protected]
Frédéric Raison
Affiliation:
European Space Astronomy Center, ESA, Spain email: [email protected]
Sergei Klioner
Affiliation:
Lohrmann Observatory, Technical University, 01062 Dresden, Germany email: [email protected]
Alexey Butkevich
Affiliation:
Lohrmann Observatory, Technical University, 01062 Dresden, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ESA space astrometry mission Gaia, due for launch in early 2012, will in addition to its huge output of fundamental astrometric and astrophysical data also provide stringent tests of general relativity. In this paper we present an updated analysis of Gaia's capacity to measure the PPN parameter γ as part of its core astrometric solution. The analysis is based on small-scale astrometric solutions taking into account the simultaneous determination of stellar astrometric parameters and the satellite attitude. In particular, the statistical correlation between PPN γ and the stellar parallaxes is considered. Extrapolating the results to a full-scale solution using some 100 million stars, we find that PPN γ could be obtained to about 10−6, which is significantly better than today's best estimate from the Cassini mission of 2 × 10−5.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

de Bruijne, J. H. J. 2005, in: Turon, C., O'Flaherty, K. S., & Perryman, M. A. C. (eds.), The Three-Dimensional Universe with Gaia, ESA SP-576, p. 35Google Scholar
Hesteroffer, D., Mouret, S., Mignard, F., Tanga, P., & Berthier, J. 2009, this proceedings, 325CrossRefGoogle Scholar
Holl, B., Hobbs, D., & Lindegren, L. 2009, this proceedings, 320CrossRefGoogle Scholar
Frœschlé, M., Mignard, F., & Arenou, F. 1997, in: Battrick, B., Perryman, M. A. C., & Bernacca, P. L. (eds.), HIPPARCOS Venice '97, ESA SP-402, p. 49Google Scholar
Lindegren, L., Høg, E., van Leeuwen, F., et al. , 1992, A&A, 258, 18Google Scholar
Mignard, F. 2002, in: Bienaymé, O. & Turon, C. (eds.), GAIA: A European Space Project, EAS Publications Series, Vol. 2 (EDP Sciences), p. 107CrossRefGoogle Scholar
Mignard, F., Bailer-Jones, C., Bastian, U., et al. 2008, in: Jin, W., Platais, I., & Perryman, M. A. C. (eds.), A Giant Step: From Milli- to Micro-Arcsecond Astrometry, Proc. IAU Symposium No. 248 (Cambridge), p. 224Google Scholar
Robin, A. C., Reylé, C., Derriére, S., & Picaud, S. 2003, A&A, 409, 523Google Scholar
Will, C. M. 2006, The Confrontation between General Relativity and Experiment, Living Rev. Relativity 9, 3, URL (27-05-2009): http://www.livingreviews.org/lrr-2006-3/CrossRefGoogle Scholar
Vecchiato, A., Lattanzi, M. G., Bucciarelli, B., Crosta, M., de Felice, F., & Gai, M. 2003, A&A 399, 337Google Scholar