Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-12T11:50:49.289Z Has data issue: false hasContentIssue false

Detecting gravitational waves from the Galactic center with pulsar timing

Published online by Cambridge University Press:  22 May 2014

Alak Ray
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
Bence Kocsis
Affiliation:
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
Simon Portegies Zwart
Affiliation:
Sterrewacht Leiden, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Black holes orbiting the supermassive black hole (SMBH) Sgr A* in the Galactic center (GC) of the Milky Way generate gravitational waves (GW). The resulting spectrum, due to stars and black holes (BHs), is continuous below 40 nHz while individual BHs within about 200 AU of the central SMBH stick out in the spectrum at higher frequencies. The GWs can be detected by timing radio pulsars within a few parsecs of this region. Future observations with the Square Kilometer Array of such pulsars with sufficient timing accuracy may be sensitive to signals from intermediate mass BHs (IMBH) in a 3 year observation baseline. The recent detection of radio pulsations from the magnetar SGR J1745–29 very near the GC opens up the possibilities of detecting millisecond pulsars (which can be used as probes of the GWs) through lines of sight with only moderate pulse and angular broadening due to scattering.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bower, G.et al. 2014, ApJ 780, L2Google Scholar
Chanamé, J. & Gould, A. 2002, ApJ 571, 320Google Scholar
Chennamangalam, J. & Lorimer, D. 2013, arXiv 1311.4846Google Scholar
Detweiler, S. 1979, ApJ 228, 939Google Scholar
Dexter, J. & O'Leary, R. 2013, arXiv:1310.7022Google Scholar
Freitag, M., Amaro-Seoane, P. & Kalogera, V. 2006, ApJ 649, 91Google Scholar
Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006b, MNRAS 368, 141CrossRefGoogle Scholar
Gillessen, S.et al. 2009, ApJ 692, 1075CrossRefGoogle Scholar
Gültekin, K., Miller, M. C. & Hamilton, D. P. 2004, ApJ 616, 221Google Scholar
Hellings, R. W. & Downs, G. S. 1983, ApJ 265, L39Google Scholar
Kocsis, B., Ray, A. & Portegies Zwart, S. 2012, ApJ 752, 67Google Scholar
Liu, K., et al. 2012, ApJ 747, 1Google Scholar
Lorimer, D. & Kramer, M. 2004, Handbook of Pulsar Astronomy, Cambridge Univ PressGoogle Scholar
Madau, P. & Rees, M. 2012, ApJ 551, L27Google Scholar
Morris, M. 1993, ApJ 408, 496Google Scholar
O'Leary, R. M., Rasio, F., Fregeau, J. M., Ivanova, N. & O'Shaughnessy, R. 2006, ApJ 637, 937Google Scholar
Pfahl, E. & Loeb, A. 2004, ApJ 615, 253Google Scholar
Portegies Zwart, S.et al. 1993, ApJ 641, 319Google Scholar
Portegies Zwart, S. & McMillan, S. 2002, ApJ 576, 899Google Scholar
Sazhin, M. V. 1978, Sov. Astron. 22, 36Google Scholar
Spitler, L.et al. 2014, ApJ 780, L3Google Scholar
Wen, Z. L.et al. 1993, ApJ 730, 29Google Scholar
Wharton, R. S.et al. 1993, ApJ 753, 108CrossRefGoogle Scholar