Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:18:43.442Z Has data issue: false hasContentIssue false

Degenerates with Dusty Disks: White Dwarfs and Cataclysmic Variables in the Infrared

Published online by Cambridge University Press:  21 February 2013

D. W. Hoard*
Affiliation:
Spitzer Science Center, California Institute of TechnologyPasadena, CA, USA Eureka Scientific, Inc.Oakland, CA, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent infrared observations, particularly from the Spitzer Space Telescope and Wide-field Infrared Survey Explorer, of white dwarfs, cataclysmic variables and other interacting compact binaries, have revealed the presence of dust in many systems. I briefly review the discovery and observational properties of dust around white dwarfs and cataclysmic variables.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Brinkworth, C. S., Hoard, D. W., Wachter, S., et al. 2007, ApJ, 659, 1541Google Scholar
Debes, J. H., Hoard, D. W., Kilic, M., et al. 2011a, ApJ, 729, 4Google Scholar
Debes, J. H., Hoard, D. W., Wachter, S., et al. 2011b, ApJS, 197, 38CrossRefGoogle Scholar
Debes, J. H. & Sigurdsson, S. 2002, ApJ, 572, 556CrossRefGoogle Scholar
Duncan, M. J. & Lissauer, J. J. 1998, Icarus, 134, 303Google Scholar
Farihi, J. 2011, in White Dwarf Atmospheres and Circumstellar Environments, ed. Hoard, D. W. (Wiley: Berlin), 117171CrossRefGoogle Scholar
Farihi, J., Brinkworth, C. S., Gänsicke, B. T., et al. 2011, ApJL, 728, L8Google Scholar
Frank, J. R., King, A. R., & Raine, D. J. 1992, Accretion Power in Astrophysics (2nd Edition) (Cambridge: Cambridge University Press), p. 79Google Scholar
Gänsicke, B. T., Koester, D., Farihi, J., et al. 2012, MNRAS, 424, 333Google Scholar
Hoard, D. W., Kafka, S., Wachter, S., et al. 2009, ApJ, 693, 236Google Scholar
Howard, A. W., Marcy, G. W., Johnson, J. A., et al. 2010, Science, 330, 653Google Scholar
Howell, S. B., Brinkworth, C., Hoard, D. W., et al. 2006, ApJL, 646, L65Google Scholar
Howell, S. B., Hoard, D. W., Brinkworth, C. S., et al. 2008, ApJ, 685, 418Google Scholar
Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122, 905CrossRefGoogle Scholar
Jura, M. 2003, ApJL, 584, L91Google Scholar
Jura, M. 2008, AJ, 135, 1785Google Scholar
Kleinman, S. J. 2010, American Institute of Physics Conference Series, 1273, 156Google Scholar
Lacombe, P., Wesemael, F., Fontaine, G., et al. 1983, ApJ, 272, 660Google Scholar
Nordhaus, J., Spiegel, D. S., Ibgui, L., et al. 2010, MNRAS, 408, 631Google Scholar
Shipman, H. L. & Greenstein, J. L. 1983, ApJ, 266, 761CrossRefGoogle Scholar
Sion, E. M., Kenyon, S. J., & Aannestad, P. A. 1990, ApJS, 72, 707Google Scholar
Spruit, H. C. & Taam, R. E. 2001, ApJ, 548, 900Google Scholar
Taam, R. E., Sandquist, E. L., & Dubus, G. 2003, ApJ, 592, 1124CrossRefGoogle Scholar
Villaver, E. & Livio, M. 2007, ApJ, 661, 1192CrossRefGoogle Scholar
Villaver, E. & Livio, M. 2009, ApJ, 705, L81Google Scholar
Willems, B., Kolb, U., Sandquist, E. L., et al. 2005, ApJ, 635, 1263CrossRefGoogle Scholar
Willems, B., Taam, R. E., Kolb, U., et al. 2007, ApJ, 657, 465CrossRefGoogle Scholar
Zuckerman, B. & Becklin, E. E. 1987, Nature, 330, 138Google Scholar
Zuckerman, B., Koester, D., Dufour, P., et al. 2011, ApJ, 739, 101Google Scholar
Zuckerman, B., Koester, D., Melis, C., et al. 2007, ApJ, 671, 872CrossRefGoogle Scholar