Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T16:58:59.508Z Has data issue: false hasContentIssue false

Deep Chandra observations of the core of the Perseus cluster

Published online by Cambridge University Press:  07 April 2020

Jeremy S. Sanders*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Perseus cluster is the X-ray brightest cluster in the sky and with deep Chandra observations we are able to map its central structure on very short spatial scales. In addition, the high quality of X-ray data allows detailed spatially-resolved spectroscopy. In this paper I review what these deep observations have told us about AGN feedback in clusters, sloshing and instabilities, and the metallicity distribution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M. 1993, MNRAS, 264, L2510.1093/mnras/264.1.L25CrossRefGoogle Scholar
Branduardi-Raymont, G., Fabricant, D., Feigelson, E., et al. 1981, ApJ, 248, 5510.1086/159129CrossRefGoogle Scholar
Churazov, E., Forman, W., Jones, C., & Böhringer, H. 2003, ApJ, 590, 22510.1086/374923CrossRefGoogle Scholar
Churazov, E., Sunyaev, R., Forman, W., & Böhringer, H. 2002, MNRAS, 332, 72910.1046/j.1365-8711.2002.05332.xCrossRefGoogle Scholar
Conselice, C. J., Gallagher, III, J. S., & Wyse, R. F. G. 2001, AJ, 122, 228110.1086/323534CrossRefGoogle Scholar
Croston, J. H., Sanders, J. S., Heinz, S., et al. 2013, ArXiv e-prints, arXiv:1306.2323Google Scholar
Fabian, A. C. 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Fabian, A. C., Celotti, A., Blundell, K. M., Kassim, N. E., & Perley, R. A. 2002, MNRAS, 331, 36910.1046/j.1365-8711.2002.05182.xCrossRefGoogle Scholar
Fabian, A. C., Hu, E. M., Cowie, L. L., & Grindlay, J. 1981, ApJ, 248, 4710.1086/159128CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2011, MNRAS, 418, 215410.1111/j.1365-2966.2011.19402.xCrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2003a, MNRAS, 344, L4310.1046/j.1365-8711.2003.06902.xCrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Crawford, C. S., et al. 2003b, MNRAS, 344, L4810.1046/j.1365-8711.2003.06856.xCrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Ettori, S., et al. 2000, MNRAS, 318, L6510.1046/j.1365-8711.2000.03904.xCrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. 2006, MNRAS, 366, 41710.1111/j.1365-2966.2005.09896.xCrossRefGoogle Scholar
Fabian, A. C., Walker, S. A., Russell, H. R., et al. 2017, MNRAS, 464, L110.1093/mnrasl/slw170CrossRefGoogle Scholar
Ferland, G. J., Fabian, A. C., Hatch, N. A., et al. 2009, MNRAS, 392, 147510.1111/j.1365-2966.2008.14153.xCrossRefGoogle Scholar
Gendron-Marsolais, M., Hlavacek-Larrondo, J., Martin, T. B., et al. 2018, MNRAS, 479, L28Google Scholar
Gillmon, K., Sanders, J. S., & Fabian, A. C. 2004, MNRAS, 348, 15910.1111/j.1365-2966.2004.07336.xCrossRefGoogle Scholar
Graham, J., Fabian, A. C., Sanders, J. S., & Morris, R. G. 2006, MNRAS, 368, 136910.1111/j.1365-2966.2006.10218.xCrossRefGoogle Scholar
Graham, J., Sanders, J. S., & Fabian, A. C. 2008, MNRAS, 386, 27810.1111/j.1365-2966.2008.13027.xCrossRefGoogle Scholar
Hatch, N. A., Crawford, C. S., Johnstone, R. M., & Fabian, A. C. 2006, MNRAS, 367, 43310.1111/j.1365-2966.2006.09970.xCrossRefGoogle Scholar
Kent, S. M. & Sargent, W. L. W. 1979, ApJ, 230, 66710.1086/157125CrossRefGoogle Scholar
Kirkpatrick, C. C. & McNamara, B. R. 2015, MNRAS, 452, 436110.1093/mnras/stv1574CrossRefGoogle Scholar
Markevitch, M. & Vikhlinin, A. 2007, Phys. Rep., 443, 110.1016/j.physrep.2007.01.001CrossRefGoogle Scholar
Rebusco, P., Churazov, E., Böhringer, H., & Forman, W. 2005, MNRAS, 359, 104110.1111/j.1365-2966.2005.08965.xCrossRefGoogle Scholar
Ruszkowski, M., Brüggen, M., & Begelman, M. C. 2004, ApJ, 611, 15810.1086/422158CrossRefGoogle Scholar
Sanders, J. S. & Fabian, A. C. 2007, MNRAS, 381, 138110.1111/j.1365-2966.2007.12347.xCrossRefGoogle Scholar
Sanders, J. S., Fabian, A. C., Russell, H. R., Walker, S. A., & Blundell, K. M. 2016, MNRAS, 460, 189810.1093/mnras/stw1119CrossRefGoogle Scholar
Sijacki, D. & Springel, V. 2006, MNRAS, 366, 39710.1111/j.1365-2966.2005.09860.xCrossRefGoogle Scholar
Simionescu, A., Werner, N., Urban, O., et al. 2012, ApJ, 757, 18210.1088/0004-637X/757/2/182CrossRefGoogle Scholar
Urban, O., Simionescu, A., Werner, N., et al. 2014, MNRAS, 437, 393910.1093/mnras/stt2209CrossRefGoogle Scholar
Walker, S. A., Hlavacek-Larrondo, J., Gendron-Marsolais, M., et al. 2017, MNRAS, 468, 250610.1093/mnras/stx640CrossRefGoogle Scholar
Weisskopf, M. C., Brinkman, B., Canizares, C., et al. 2002, PASP, 114, 110.1086/338108CrossRefGoogle Scholar
Zhuravleva, I., Churazov, E., Schekochihin, A. A., et al. 2014, Nature, 515, 8510.1038/nature13830CrossRefGoogle Scholar