Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:54:52.788Z Has data issue: false hasContentIssue false

Deconvolving the complex structure of the asteroid belt

Published online by Cambridge University Press:  16 October 2024

Stanley F. Dermott*
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611, US
Dan Li*
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, US
Apostolos A. Christou*
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The asteroid belt is a unique source of information on some of the most important questions facing solar system science. These questions include the sizes, numbers, types and orbital distributions of the planetesimals that formed the planets, and the identification of those asteroids that are the sources of meteorites and near-Earth asteroids. Answering these questions requires an understanding of the dynamical evolution of the asteroid belt, but this evolution is governed by a complex interplay of mechanisms that include catastrophic disruption, orbital evolution driven by Yarkovsky radiation forces, and chaotic orbital evolution driven by gravitational forces. While the timescales of these loss mechanisms have been calculated using estimates of some critical parameters that include the thermal properties, strengths and mean densities of the asteroids, we argue here that the uncertainties in these parameters are so large that deconvolution of the structure of the asteroid belt must be guided primarily by observational constraints. We argue that observations of the inner asteroid belt indicate that the size-frequency distribution is not close to the equilibrium distribution postulated by Dohnanyi (1969). We also discuss the correlations observed between the sizes and the orbital elements of the asteroids. While some of these correlations are significant and informative, others are spurious and may arise from the limitations of the Hierarchical Clustering Method that is currently used to define family membership.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bottke, W. F. Jr, Vokrouhlický, D., Rubincam, D. P., & Broz, M. 2002, Asteroids III, 395.CrossRefGoogle Scholar
Christou, A.A., Dermott, S.F., & Li, D. 2022, MNRAS, 516, 1428.CrossRefGoogle Scholar
Delbó, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. 2017, Science, 357, 1026.CrossRefGoogle Scholar
Delbó, M., Avdellidou, C., & Morbidelli, A. 2019, A&A, 624, A69.Google Scholar
Dermott, S. F., Nicholson, P. D., Burns, J. A., & Houck, J. R. 1984, Nature, 312, 505.CrossRefGoogle Scholar
Dermott, S. F., Kehoe, T. J. J., Durda, D. D., Grogan, K., & Nesvorný, D. 2002, in: Warmbein, B. (eds.), Asteroids, Comets, and Meteors: ACM 2002, ESA Special Publication, p. 319Google Scholar
Dermott, S.F., Christou, A.A., Li, D., Kehoe, T. J.J., & Robinson, J.M. 2018, Nature Astronomy, 2, 549.CrossRefGoogle Scholar
Dermott, S.F., Li, D., Christou, A.A., Kehoe, T. J.J., Murray, C.D., & Robinson, J.M. 2021, MNRAS, 505, 1917.CrossRefGoogle Scholar
Dermott, S.F., Li, D., & Christou, A.A. 2022, IAU Symposium, 364, 1.Google Scholar
Dohnanyi, J.S. 1969, Journal of Geophysical Research, 74, 2531.CrossRefGoogle Scholar
Farinella, P., Froeschlé, C., Froeschlé, C., Gonczi, R., Hahn, G., Morbidelli, A., & Valsecchi, G.B. 1994, Nature, 371, 314.CrossRefGoogle Scholar
Farinella, P., Vokrouhlický, D., & Hartmann, W. K. 1998, Icarus, 132, 378.CrossRefGoogle Scholar
Farinella, P. & Vokrouhlický, D. 1999, Science, 283, 1507.CrossRefGoogle Scholar
Gallardo, T., Venturini, J., Roig, F., & Gil-Hutton, R. 2011, Icarus, 214, 632.CrossRefGoogle Scholar
Gladman, B.J., Migliorini, F., Morbidelli, A., Zappala, V., Michel, P., Cellino, A., Froeschle, C., Levison, H.F., Bailey, M., & Duncan, M. 1997, Science, 277, 197.CrossRefGoogle Scholar
Granvik, M., Morbidelli, A., Vokrouhlický, D., Bottke, W.F., Nesvorný, D., & Jedicke, R. 2017, A&A, 598, A52.Google Scholar
Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W.F., Beshore, E., Vokrouhlický, D., Nesvorný, D., & Michel, P. 2018, Icarus, 312, 181.CrossRefGoogle Scholar
Greenberg, A.H., Margot, J.L., Verma, A.K., Taylor, P.A., & Hodge, S.E. 2020, AJ, 159, 92.CrossRefGoogle Scholar
Grogan, K., Dermott, S. F., & Durda, D. D. 2001, Icarus, 152, 251.CrossRefGoogle Scholar
Hendler, N.P. & Malhotra, R. 2020, The Planetary Science Journal, 1, 75.CrossRefGoogle Scholar
Knežević, Z., & Milani, A. 2000, Cel. Mech. Dyn. Astr., 78, 17 CrossRefGoogle Scholar
Leinhardt, Z., Dobinson, J., Carter, P. J., & Lines, S. 2015, ApJ, 806, 23.CrossRefGoogle Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. 1970, Science, 168, 1445.CrossRefGoogle Scholar
McSween, Harry Y. and Binzel, Richard P. 2022, Vesta and Ceres. Insights from the Dawn Mission for the Origin of the Solar System, 41.Google Scholar
Migliorini, F., Michel, P., Morbidelli, A., Nesvorný, D., & Zappala, V. 1998, Science, 281, 2022.CrossRefGoogle Scholar
Morbidelli, A. & Nesvorný, D. 1999, Icarus, 139, 295.CrossRefGoogle Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. 2009, Icarus, 204, 558.CrossRefGoogle Scholar
Nesvorný, D. 2015, HCM Asteroid Families V3.0. NASA Planetary Data System.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., Gaskell, R., Preusker, F., Roatsch, T., Jaumann, R., Buczkowski, D., McCord, T., McSween, H. Y., Williams, D., Yingst, A., Raymond, C., & Russell, C. 2012, Science, 336, 694.CrossRefGoogle Scholar
Spoto, F., Milani, A., & Knežević, Z. 2015, Icarus, 257, 275.CrossRefGoogle Scholar
Sykes, M. V., & Greenberg, R. 1986, Icarus, 65, 51.CrossRefGoogle Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., Storrs, A. D., Wells, E. N., & Zellner, B. H. 1997, Science, 277, 1492.CrossRefGoogle Scholar
Zappala, V., Cellino, A., Farinella, P., & Knežević, Z. 1990, AJ, 100, 2030.CrossRefGoogle Scholar