Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:17:33.989Z Has data issue: false hasContentIssue false

Decay of trefoil and other magnetic knots

Published online by Cambridge University Press:  08 June 2011

Simon Candelaresi
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden and Department of Astronomy, Stockholm University, SE 10691 Stockholm, Sweden
Fabio Del Sordo
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden and Department of Astronomy, Stockholm University, SE 10691 Stockholm, Sweden
Axel Brandenburg
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden and Department of Astronomy, Stockholm University, SE 10691 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two setups with interlocked magnetic flux tubes are used to study the evolution of magnetic energy and helicity on magnetohydrodynamical (MHD) systems like plasmas. In one setup the initial helicity is zero while in the other it is finite. To see if it is the actual linking or merely the helicity content that influences the dynamics of the system we also consider a setup with unlinked field lines as well as a field configuration in the shape of a trefoil knot. For helical systems the decay of magnetic energy is slowed down by the helicity which decays slowly. It turns out that it is the helicity content, rather than the actual linking, that is significant for the dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Brandenburg, A. & Subramanian, K. 2005, Phys. Rep. 417, 1CrossRefGoogle Scholar
Brandenburg, A. & Dobler, W. 2001, Astron. Astrophys. 369, 329CrossRefGoogle Scholar
Brandenburg, A., Candelaresi, S., & Chatterjee, P. 2009, MNRAS 398, 1414CrossRefGoogle Scholar
Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, Geophys. Res. Lett. 26, 627CrossRefGoogle Scholar
Moffatt, H. K. 1969, J. Fluid Mech. 35, 117CrossRefGoogle Scholar
Del Sordo, F., Candelaresi, S., & Brandenburg, A. 2010, Phys. Rev. E 81, 036401CrossRefGoogle Scholar
Gibson, S. E., Fletcher, L., Del Zanna, G. et al. . 2002 ApJ 574, 1021CrossRefGoogle Scholar
Leka, K. D., Canfield, R. C., McClymont, A. N., & van Driel-Gesztelyi, L. 1996, ApJ 462, 547CrossRefGoogle Scholar
Manoharan, P. K., van Driel-Gesztelyi, L., Pick, M., & Demoulin, P. 1996, ApJ 468, L73CrossRefGoogle Scholar
Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995, ApJ 440, L109CrossRefGoogle Scholar
Yeates, A. R., Hornig, G., & Wilmot-Smith, A. L. 2010, Phys. Rev. Lett., 105, 085002CrossRefGoogle Scholar