Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T13:09:48.577Z Has data issue: false hasContentIssue false

Debris Disks in Nearby Young Moving Groups in the ALMA Era

Published online by Cambridge University Press:  27 January 2016

Á. Kóspál
Affiliation:
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, PO Box 67, 1525 Budapest, Hungary email: [email protected], [email protected]
A. Moór
Affiliation:
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, PO Box 67, 1525 Budapest, Hungary email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Beuzit, J.-L., Boccaletti, A., Feldt, M., et al. 2010, Proceedings of the workshop “Pathways Towards Habitable Planets”, V Coudé du Foresto, Gelino, D. M., and Ribas, I., eds., p. 231Google Scholar
Boley, A. C., Payne, M. J., Corder, S., et al. 2012, ApJL, 750, L21CrossRefGoogle Scholar
Corder, S., Carpenter, J. M., Sargent, A. I., et al. 2009, ApJL, 690, L65CrossRefGoogle Scholar
Dent, W. R. F., Wyatt, M. C., Roberge, A., et al. 2014, Science, 343, 1490Google Scholar
Eiroa, C., et al. 2013, A&A, 555, A11Google Scholar
Fernández, R., Brandeker, A., & Wu, Y. 2006, ApJ, 643, 509Google Scholar
France, K., Roberge, A., Lupu, R. E., Redfield, S., & Feldman, P. D. 2007, ApJ, 668, 1174Google Scholar
Greaves, J. S., Holland, W. S., Moriarty-Schieven, G., et al. 1998, ApJL, 506, L133CrossRefGoogle Scholar
Hobbs, L. M., Vidal-Madjar, A., Ferlet, R., Albert, C. E., & Gry, C. 1985, ApJ, 293, L29Google Scholar
Holland, W. S., Greaves, J. S., Zuckerman, B., et al. 1998, Nature, 392, 788CrossRefGoogle Scholar
Hughes, A. M., Wilner, D. J., Andrews, S. M., et al. 2011, ApJ, 740, 38Google Scholar
Kalas, P., Graham, J. R., & Clampin, M. 2005, Nature, 435, 1067CrossRefGoogle Scholar
Kenyon, S. J. & Bromley, B. C. 2008, ApJS, 179, 451Google Scholar
Kennedy, G. M. & Wyatt, M. C. 2010, MNRAS, 405, 1253Google Scholar
Kóspál, Á., Moór, A., Juhász, A., et al. 2013, ApJ, 776, 77CrossRefGoogle Scholar
Krivov, A. V. 2010, RAA, 10, 383Google Scholar
Kuchner, M. J. & Holman, M. J. 2003, ApJ, 588, 1110Google Scholar
MacGregor, M. A., Wilner, D. J., Rosenfeld, K. A., et al. 2013, ApJL, 762, L21CrossRefGoogle Scholar
Macintosh, B. A., Graham, J. R., Palmer, D. W., et al. 2008, Proceedings of the SPIE, Hubin, N., Max, C. E., Wizinowich, P. L, eds., Vol 7015, article id. 701518Google Scholar
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T. 2010, Nature, 468, 1080CrossRefGoogle Scholar
Matthews, B. C., Krivov, A. V., Wyatt, M. C., Bryden, G., & Eiroa, C. 2014a, Protostars and Planets VI, Beuther, H., Klessen, R., Dullemond, C., Henning, Th., eds., p. 521–544.Google Scholar
Matthews, B., Kennedy, G., Sibthorpe, B., Booth, M., Wyatt, M., Broekhoven-Fiene, H., Macintosh, B., & Marois, C. 2014b, ApJ, 780, 97Google Scholar
Moór, A., Ábrahám, P., Juhász, A., et al. 2011, ApJ, 740, L7Google Scholar
Moór, A., et al. 2013a, ApJ, 775, L51Google Scholar
Moór, A., Juhász, A., Kóspál, Á., et al. 2013b, ApJ, 777, 25Google Scholar
Moór, A., Kóspál, Á., Ábrahám, P., et al. 2015, MNRAS, 447, 577Google Scholar
Mustill, A. J. & Wyatt, M. C. 2009, MNRAS, 399, 1403CrossRefGoogle Scholar
Piétu, V., di Folco, E., Guilloteau, S., Gueth, F., & Cox, P. 2011, A&A, 531, L2Google Scholar
Rameau, J., et al. 2013, ApJ, 779, L26Google Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., & Walsh, K. J. 2014, Protostars and Planets VI, Beuther, H., Klessen, R., Dullemond, C., Henning, Th., eds., p. 595-619.Google Scholar
Redfield, S. 2007, ApJ, 656, L97CrossRefGoogle Scholar
Rhee, J. H., Song, I., Zuckerman, B., & McElwain, M. 2007, ApJ, 660, 1556Google Scholar
Ricci, L., Carpenter, J. M., Fu, B., et al. 2015, Apj, 798, 124Google Scholar
Riviere-Marichalar, P., Barrado, D., Augereau, J.-C., et al. 2012, A&A, 546, L8Google Scholar
Riviere-Marichalar, P., Barrado, D., Montesinos, B., et al. 2014, A&A, 565, A68Google Scholar
Slettebak, A. 1975, ApJ, 197, 137CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., et al. 2009, ApJ, 705, 314Google Scholar
Su, K. Y. L., Morrison, S., Malhotra, R., et al. 2015, ApJ, 799, 146Google Scholar
Telesco, C. M., Fisher, R. S., Wyatt, M. C., et al. 2005, Nature, 433, 133Google Scholar
Williams, J. P. & Cieza, L. A. 2011, ARA&A, 49, 67Google Scholar
Wyatt, M. C. 2003, ApJ, 598, 1321Google Scholar
Wyatt, M. C. 2005, A&A, 440, 937Google Scholar
Wyatt, M. C. 2008, ARA&A, 46, 339Google Scholar
Zuckerman, B., Forveille, T., & Kastner, J. H. 1995, Nature, 373, 494Google Scholar
Zuckerman, B., Rhee, J. H., Song, I., & Bessell, M. S. 2011, ApJ, 732, 61CrossRefGoogle Scholar