Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-02T21:20:39.090Z Has data issue: false hasContentIssue false

A data analysis library for gravitational wave detection

Published online by Cambridge University Press:  20 March 2013

A. Lassus
Affiliation:
LPC2E, CNRS, Université d'Orléans email: antoine.lassus@cnrs-orléans.fr
R. van Haasteren
Affiliation:
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover, Germany email: [email protected]
C. M. F. Mingarelli
Affiliation:
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK email: [email protected], [email protected]
K. J. Lee
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany email: [email protected]
A. Vecchio
Affiliation:
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the main goals of Pulsar Timing Arrays (PTAs) is the direct detection of gravitational waves (GWs). A first detection will be a major leap for astronomy and substantial effort is currently going into timing as many pulsars as possible, with the highest possible accuracy. As part of the individual PTA projects, several groups are developing data analysis methods for the final stage of a gravitational-waves search pipeline: the analysis of the timing residuals. Here we report the progress of on-going work to develop, within a Bayesian framework, a comprehensive and user friendly analysis library to search for gravitational waves in PTA data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Coles, W., et al.MNRAS 418, 561.CrossRefGoogle Scholar
Detweiler, S., 1979, ApJ, 234, 1100.CrossRefGoogle Scholar
Ellis, J., et al., ApJ 753, 96EGoogle Scholar
Estabrook, F. B. & Wahlquist, H. D., 1975, Gen. Relativ. Gravit., 6, 439.CrossRefGoogle Scholar
Hellings, R. W. & Downs, G. S., 1983, ApJ 265 L39.CrossRefGoogle Scholar
Hobbs, G., et al., 2012, arXiv:astro-ph/1208.3560Google Scholar
Maggiore, M., 2000, Phys. Rep., 331, 6CrossRefGoogle Scholar
Mingarelli, C. M. F., et al., 2012, Phys. Rev. Lett, 109, 081104Google Scholar
Phinney, E. S., 2001, arXiv:astro-ph/0108028Google Scholar
Pitkin, M., 2012, arXiv:astro-ph/1201.3573Google Scholar
Sanidas, S. A., et al., 2012, Phys. Rev. D, 85, 122003.Google Scholar
Sazhin, M. V., 1978, Sov. Astron., 22, 36.Google Scholar
Sesana, A. & Vecchio, A., 2010, Phys. Rev. D, 81, 104008.Google Scholar
Sesana, A., Vecchio, A. & Colacino, C. N., 2008, MNRAS, 390, 192.Google Scholar
van Haasteren, R., et al., 2009, MNRAS, 395, 1005CrossRefGoogle Scholar
van Haasteren, R., 2012, arXiv:1210.0584Google Scholar