Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T20:39:43.575Z Has data issue: false hasContentIssue false

The Dark Halo – Spheroid Conspiracy Reloaded: Evolution with Redshift

Published online by Cambridge University Press:  10 April 2015

Rhea-Silvia Remus
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany
Klaus Dolag
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany MPI for Astrophysics, Karl-Schwarzschild Strasse 1, D-85748 Garching, Germany
Andreas Burkert
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany MPI for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The total density profiles of elliptical galaxies can be fit by a single power law, i.e., ρtotrγ with γ ≈ −2. While strong lensing observations show a tendency for the slopes to become flatter with increasing redshift, simulations indicate an opposite trend. To understand this discrepancy, we study a set of simulated spheroids formed within the cosmological framework. From our simulations we find that the steepness of the total density slope correlates with the compactness of the stellar component within the half-mass radius, and that spheroidal galaxies tend to be more compact at high redshifts than their present-day counterparts. While both these results are in agreement with observations, the observed trend of the total density slope with redshift remains in contradiction to the results from simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Auger, M. W., et al. 2010, ApJ, 724, 511Google Scholar
Barnabè, M., et al. 2011, MNRAS, 415, 2215Google Scholar
Bolton, A. S., et al. 2012, ApJ, 757, 82Google Scholar
Dolag, K., Vazza, F., Brunetti, G., & Tormen, G. 2005, MNRAS, 364, 753Google Scholar
Dolag, K., Borgani, S., Murante, G., & Springel, V. 2009, MNRAS, 399, 497Google Scholar
Einasto, J., Kaasik, A., & Saar, E. 1974, Nature, 250, 309Google Scholar
Faber, S. M. & Gallagher, J. S. 1979, ARA&A, 17, 135Google Scholar
Gerhard, O., Kronawitter, A., Saglia, R. P., & Bender, R. 2001, AJ, 121, 1936Google Scholar
Hirschmann, M., et al. 2014, MNRAS, 442, 2304Google Scholar
Komatsu, E., et al. 2011, ApJS, 192, 18Google Scholar
Remus, R.-S., Burkert, A., & Dolag, K., et al. 2013, ApJ, 766, 71Google Scholar
Remus, R.-S., et al. 2014, in IAU Symp. 309, Galaxies in 3D across the Universe, eds. Ziegler, B. L., Combes, F.Dannerbauer, H. & Verdugo, M., in pressGoogle Scholar
Ruff, A. J., et al. 2011, ApJ, 727, 96CrossRefGoogle Scholar
Scannapieco, C., et al. 2008, MNRAS, 389, 1137Google Scholar
Sonnenfeld, A., Treu, T., Gavazzi, R., et al. 2013, ApJ, 777, 98Google Scholar
Springel, V. 2005, MNRAS, 364, 1105Google Scholar
Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS, 328, 726CrossRefGoogle Scholar
Treu, T. & Koopmans, L. V. E. 2004, ApJ, 611, 739Google Scholar
van de Sande, J., Kriek, M., Franx, M., et al. 2013, ApJ, 771, 85Google Scholar