Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:50:09.347Z Has data issue: false hasContentIssue false

Cutting-edge issues in core-collapse supernova theory

Published online by Cambridge University Press:  05 September 2012

Kei Kotake*
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on our multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. Our results from the first generation of full GR 3D simulations including approximate neutrino transport are quite optimistic, indicating that both of the two ingredients can foster neutrino-driven explosions. We give an outlook with a summary of the most urgent tasks to draw a robust conclusion to our findings.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abbasi, R., et al. 2011, A&A, 535, A109Google Scholar
Alcubierre, M. & Brügmann, B. 2001, Phys. Rev. D., 63, 104006CrossRefGoogle Scholar
Antonioli, P., et al. 2004, New Journal of Physics, 6, 114CrossRefGoogle Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971CrossRefGoogle Scholar
Bruenn, S. W., Mezzacappa, A., Hix, W. R., Blondin, J. M., Marronetti, P., Messer, O. E. B., Dirk, C. J., & Yoshida, S. 2010, arXiv:1002.4909Google Scholar
Buras, R., Rampp, M., Janka, H.-Th., & Kifonidis, K. 2006, A&A, 447, 1049Google Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J. 2006, ApJ, 640, 878CrossRefGoogle Scholar
Colgate, S. A. & White, R. H. 1966, ApJ, 143, 626CrossRefGoogle Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081CrossRefGoogle Scholar
Foglizzo, T., Scheck, L., & Janka, H.-T. 2006, ApJ, 652, 1436CrossRefGoogle Scholar
Fujimoto, S.-I., Kotake, K., Hashimoto, M.-A., Ono, M., & Ohnishi, N. 2011, ApJ, 738, 61CrossRefGoogle Scholar
Hanke, F., Marek, A., Mueller, B., & Janka, H.-T. 2011, arXiv:1108.4355Google Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339CrossRefGoogle Scholar
Iwakami, W., Kotake, K., Ohnishi, N., Yamada, S., & Sawada, K. 2008, ApJ, 678, 1207CrossRefGoogle Scholar
Janka, H. & Müller, E. 1996, A&A, 306, 167Google Scholar
Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., & Müller, B. 2007, Phy. Rep., 442, 38CrossRefGoogle Scholar
Kotake, K. 2011, Comptes Rendus Physique, accepted (arXiv:1110.5107)Google Scholar
Kotake, K., Sato, K., & Takahashi, K. 2006, Reports of Progress in Physics, 69, 971CrossRefGoogle Scholar
Kotake, K., Iwakami-Nakano, W., & Ohnishi, N. 2011, ApJ, 736, 124CrossRefGoogle Scholar
Kuroda, T. & Umeda, H. 2010, ApJS, 191, 439CrossRefGoogle Scholar
Kuroda, T., Kotake, K., & Takiwaki, T. 2012, ApJ, submitted (arXiv:1202.2487)Google Scholar
Lentz, E. J., et al. 2011, arXiv:1112.3595Google Scholar
Liebendörfer, M., et al. 2004, ApJS, 150, 263CrossRefGoogle Scholar
Liebendörfer, M., Rampp, M., Janka, H.-T., & Mezzacappa, A. 2005, ApJ, 620, 840CrossRefGoogle Scholar
Liebendörfer, M., Whitehouse, S. C., & Fischer, T. 2009, ApJ, 698, 1174CrossRefGoogle Scholar
Marek, A. & Janka, H.-T. 2009, ApJ, 694, 664CrossRefGoogle Scholar
Masada, Y., Takiwaki, T., & Kotake, K. 2011, ApJ, submittedGoogle Scholar
Müller, B., Janka, H.-T., & Marek, A. 2012, arXiv:1202.0815Google Scholar
Nordhaus, J., Burrows, A., Almgren, A., & Bell, J. 2010, ApJ, 720, 694CrossRefGoogle Scholar
Ohnishi, N., Kotake, K., & Yamada, S. 2006, ApJ, 641, 1018CrossRefGoogle Scholar
Shibata, M., Kiuchi, K., Sekiguchi, Y., & Suwa, Y. 2011, Progress of Theoretical Physics, 125, 1255CrossRefGoogle Scholar
Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., & Toki, H. 2005, ApJ, 629, 922CrossRefGoogle Scholar
Suwa, Y., Kotake, K., Takiwaki, T., Whitehouse, S. C., Liebendörfer, M., & Sato, K. 2010, PASJ (Letters), 62, L49CrossRefGoogle Scholar
Takiwaki, T. & Kotake, K. 2011, ApJ, 743, 30CrossRefGoogle Scholar
Takiwaki, T., Kotake, K., & Suwa, Y. 2012, ApJ, 749, 98CrossRefGoogle Scholar
Thorne, K. S. 1981, MNRAS, 194, 439CrossRefGoogle Scholar
Wang, L. & Wheeler, J. C. 2008, ARAA, 46, 433CrossRefGoogle Scholar
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74, 1015CrossRefGoogle Scholar