No CrossRef data available.
Published online by Cambridge University Press: 13 February 2024
In the context of hierarchical galaxy assembly, globular clusters and dwarf galaxies are indispensable probes of the formation of our Milky Way. M22 is a stellar system with chemical abundances reminiscent of an accreted dwarf galaxy such as ω Centauri but disc-like kinematics suggesting a Milky Way origin. Curiously, M22 contains a population of stars enhanced in slow neutron-capture (s-)process elements due to pollution from low-mass AGB stars. Recently, the original in-situ population stars of the Milky Way disc has been revealed to be enhanced in s-process elements. This provides a tantalizing link between the in-situ Milky Way population and the formation of M22. This talk discussed how recent high-precision chemical abundance measurements suggest that M22 may be coeval with this in-situ component, and what the formation mechanisms of this s-process population can tell us about the chemical evolution of our Galaxy before the establishment of the disc.